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Abstract

Remote sensing can be used to map tillage practices at large spatial and temporal scales.

However, detecting such management practices in smallholder systems is challenging

given that the size of fields is smaller than historical readily-available satellite imagery. In

this study we used newer, higher-resolution satellite data from Sentinel-1, Sentinel-2, and

Planet to map tillage practices in the Eastern Indo-Gangetic Plains in India. We specifically

tested the classification performance of single sensor and multiple sensor random forest

models, and the impact of spatial, temporal, or spectral resolution on classification accuracy.

We found that when considering a single sensor, the model that used Planet imagery (3 m)

had the highest classification accuracy (86.55%) while the model that used Sentinel-1 data

(10 m) had the lowest classification accuracy (62.28%). When considering sensor combina-

tions, the model that used data from all three sensors achieved the highest classification

accuracy (87.71%), though this model was not statistically different from the Planet only

model when considering 95% confidence intervals from bootstrap analyses. We also found

that high levels of accuracy could be achieved by only using imagery from the sowing period.

Considering the impact of spatial, temporal, and spectral resolution on classification accu-

racy, we found that improved spatial resolution from Planet contributed the most to improved

classification accuracy. Overall, it is possible to use readily-available, high spatial resolution

satellite data to map tillage practices of smallholder farms, even in heterogeneous systems

with small field sizes.

Introduction

Conventional tillage (CT) is typically used to prepare agricultural fields for planting as it con-

trols weeds, removes most plant residue from the previous crop, and creates a fine seedbed [1].

Yet, CT negatively impacts long-term soil health due to increased erosion, the loss of organic

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0277425 November 28, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Liu Y, Rao P, Zhou W, Singh B, Srivastava

AK, Poonia SP, et al. (2022) Using Sentinel-1,

Sentinel-2, and Planet satellite data to map field-

level tillage practices in smallholder systems. PLoS

ONE 17(11): e0277425. https://doi.org/10.1371/

journal.pone.0277425

Editor: Jaishanker Raghunathan Nair, Indian

Institute of Information Technology and

Management - Kerala, INDIA

Received: April 22, 2022

Accepted: October 27, 2022

Published: November 28, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0277425

Copyright: © 2022 Liu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: We have now

included all minimal data sets in the Zenodo data

https://orcid.org/0000-0002-6715-2207
https://doi.org/10.1371/journal.pone.0277425
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277425&domain=pdf&date_stamp=2022-11-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277425&domain=pdf&date_stamp=2022-11-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277425&domain=pdf&date_stamp=2022-11-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277425&domain=pdf&date_stamp=2022-11-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277425&domain=pdf&date_stamp=2022-11-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277425&domain=pdf&date_stamp=2022-11-28
https://doi.org/10.1371/journal.pone.0277425
https://doi.org/10.1371/journal.pone.0277425
https://doi.org/10.1371/journal.pone.0277425
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


matter, and reduced water retention [2]. Zero tillage (ZT), where seeds are planted directly

into untilled fields that typically contain previous crop residue, has been shown to provide

agronomic and economic benefits, including minimizing soil disturbance, reducing soil ero-

sion, and maintaining soil cover [3–5]. Globally, the amount of land area under ZT has

increased since the 1990s [6], yet quantifying the exact area under ZT has been challenging

given that typical methods used to collect such information, such as censuses, are not imple-

mented in all regions of the world due to financial, accessibility, and labor constraints [7]. This

is particularly true in smallholder systems, where small-scale studies have suggested that ZT

adoption rates have increased steadily in recent years [8]. Understanding ZT adoption in

smallholder systems is critically important given that it has been shown to be an important

way to sustainably intensify cereal grains in these systems [9–11]. Remote sensing can offer an

alternative and low-cost way to quantify ZT adoption at large spatial and temporal scales.

Numerous detection techniques have been developed to map tillage practices using remote

sensing [12, 13], yet these approaches may not be suitable for detecting tillage practices in

smallholder systems [14, 15]. This is largely because the size of smallholder fields (< 2 ha) is

typically smaller than the spatial resolution of historically-available satellite data that were used

in previous studies, such as Landsat (30 m) [14, 16, 17]. Over the last five years, new higher-

spatial resolution satellites, such as Sentinel-1 (10 m), Sentinel-2 (10 m), and Planet (3 m),

have become available, and studies have shown that these sensors are better able to capture

field-level variation of smallholder farms [18–21]. It is possible that these higher resolution

sensors may be able to effectively map tillage practices in smallholder systems, yet to our

knowledge, no studies exist that have used these higher resolution satellite datasets to map till-

age practices in smallholder systems.

Previous studies that have used satellite data to map tillage practices have found that using

multiple sensors in classification algorithms can improve accuracy. For example, Azzari et al.

(2019) found that combining optical Landsat satellite data and radar Sentinel-1 data led to

higher classification accuracies of tillage practices across the United States Midwest, although

the contribution of Sentinel-1 data was small. In smallholder systems, it is possible that com-

bining Planet, Sentinel-1, and Sentinel-2 satellite data may improve classification accuracies.

Sentinel-1 has the advantage of being less sensitive to water vapor and cloud cover as radar

data have the ability to penetrate cloud cover, providing data more regularly through time

than optical sensors [22]. This is important in smallholder systems given that they are largely

found throughout the tropics with periods of high rainfall and cloud cover [18]. Sentinel-2

imagery has multiple spectral bands that cover the visible near-infrared (VNIR), shortwave-

infrared (SWIR), and red-edge wavelengths; red-edge spectral bands are particularly critical

for mapping vegetation characteristics [23, 24] and have been found to increase the accuracy

of mapping crop residue cover [25, 26]. Planet imagery has higher spatial resolution (3 m)

than Sentinel-1 and Sentinel-2 imagery (10 m), which may reduce the effect of mixed pixels at

field edges [21, 27].

Though previous studies have shown that classification accuracy of mapping agricultural

characteristics, including crop type and yield, can be improved by using images throughout

the growing season [19, 28–30], it is possible that only using images during the early part of

the growing season may result in high classification accuracies for mapping tillage practices.

This is because most spectral and phenological differences are likely to occur at the start of the

growing season as fields are prepared and seedlings germinate. Producing accurate maps of

tillage practices using only early season imagery could allow for within-season mapping of ZT

areas; such information could be important for policy makers and decision-makers who could

use such maps in real time [31].
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This study examines the ability of Planet, Sentinel-1, and Sentinel-2 imagery to map field-level

ZT and CT in smallholder farming systems. We focus our study in the state of Bihar in the Eastern

Indo-Gangetic Plains in India, which is a region where ZT adoption has increased over the last

decade [32], where field sizes are very small (< 0.3 ha on average), and where farm management

practices are heterogeneous [33]. We aim to answer the following questions in this study:

1. How effectively can single sensor and multiple sensor combinations of Planet, Sentinel-1,

and Sentinel-2 map field-level tillage practices of smallholder farms? Which features are the

most important for classification accuracy?

2. Can we use only early season imagery to effectively map tillage practices, which can be used

to provide within-season maps of ZT adoption?

3. Does improved spatial, temporal, or spectral resolution result in higher classification

accuracy?

This study is one of the first to examine how well tillage practices can be mapped in small-

holder systems using newer high-resolution satellite imagery. While the analyses presented in

this paper are specific to our study area in India, it is likely that the broad findings from our

study can be used to inform the most effective ways to map tillage practices in other small-

holder systems across the globe.

Materials

Study area and ground truth data

The study was conducted in Arrah district, Bihar, India (25.47˚N, 84.52˚E) in 2017–2018 (Fig

1). Bihar has fertile soil and a large amount of rainfall, but its agricultural productivity is one of

the lowest among all Indian states [10]. Although the adoption of ZT technology in Bihar has

increased through time, it is still limited because many farmers lack awareness of ZT and do

not have access to the machinery required for ZT [10]. While it is difficult to estimate the

amount of area under ZT due to a lack of available ground data, surveys suggest that ZT adop-

tion is variable across villages and can range from 0% to 98% of village land area in Bihar [10].

We focused on a 30 by 70 km2 region where there was variation in tilling practices, and we col-

lected ground truth data from 20 villages distributed across the study area. This region is pre-

dominantly comprised of smallholder fields (< 0.3 ha on average), with farms covering over

80% of land area and with over 80% of the region’s population taking part in farming [34].

There are two main cropping seasons in this region, the monsoon (kharif) season, which spans

from June to October and is when most farmers plant rice, and the winter (rabi) season, which

spans from November to April and is when most farmers plant wheat [19]. Our study only

focused on wheat fields planted during the winter cropping season.

Field management across this region is extremely heterogeneous, making it a complex sys-

tem in which to map tillage practices using one universal algorithm. The sowing dates of

wheat vary widely across the study region, ranging from mid-November to early January [35].

Wheat variety planted and input use, including fertilizer and irrigation, is also highly variable,

with significant heterogeneity even across neighboring fields [19, 35]. Most farmers clear rice

residues prior to sowing wheat, though some farmers leave partial residues in field. Rice resi-

dues are typically removed in this region as farmers harvest rice manually, which leaves behind

little to no residue, farmers use rice residues for crop feed, and farmers use older generation

ZT machinery that is less effective at planting wheat seeds within standing rice residues. Given

that most CT and ZT fields are cleared of rice residues prior to wheat planting, this makes it

additionally challenging to map ZT in this region.
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Ground truth data were collected during April to May 2018 by field staff from the Cereal

Systems Initiative of South Asia, which is a program under the International Maize and Wheat

Improvement Center (CIMMYT-CSISA). The survey collected information on tillage prac-

tices, including whether the field was under CT or ZT, and other field management practices

(See S1 Table in S1 File for survey). Example photos of ZT and CT fields are shown in Fig 2. In

addition, we collected GPS locations at the four corners and at the center of each field which

were later used to manually digitize field boundaries. We did this by overlaying all GPS points

on high-resolution imagery in Google Earth Pro (https://www.google.com/earth/versions/

#earth-pro) and manually drawing polygons that connected the four corner GPS locations.

We then manually adjusted these polygons to match visible field boundaries that we could see

in the high-resolution imagery. We selected the image date within Google Earth Pro that was

closest to our time of survey to ensure that visible field boundaries in the imagery were consis-

tent with the field boundaries that we surveyed on the ground. Our survey data were collected

from a total of 160 fields, with 65 fields representing ZT and 95 fields representing CT.

Satellite data

We selected the time period for our analysis by considering the timing of cropping cycles in

this region as well as the phenologies of ZT and CT fields (Fig 3). Considering the timing of

Fig 1. Schematic diagram of the study area. Maps showing (A) the location of our study area in Bihar, (B) our study polygons plotted in

Arrah district, Bihar and (C) a zoom in of some of our polygons overlaid on Planet imagery.

https://doi.org/10.1371/journal.pone.0277425.g001
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cropping cycles, wheat was planted in our study area from November 11 to December 31, with

tillage occurring from mid-October to early November. To ensure that we captured the full

range of phenological change when the field was fallow prior to planting wheat, we used Octo-

ber 1st as the first date of our study period. Considering NDVI (Normalized Difference Vegeta-

tion Index) phenologies, we observed that NDVI values became similar in both ZT and CT

fields after mid-February (Fig 3). Thus, we used March 1st, 2018 as the last date of our study

period. We defined the sowing season as October 1 to December 31, since this time period

spanned the full range of sowing dates in our dataset, and defined the full season as October 1

to March 1. From October to December, NDVI is higher in ZT fields compared to CT fields

(Fig 3), likely because farmers maintain monsoon rice crop residue on ZT fields but not CT

Fig 2. Photos of example zero tillage (A) and conventional tillage (B) fields.

https://doi.org/10.1371/journal.pone.0277425.g002

Fig 3. Phenology curves generated from averaged NDVI values of all ZT (red) and CT (blue) fields for the 2017–

18 growing season using Sentinel-2 imagery. The drop in NDVI values from October to December represents the

end of the rice crop, and captures senescence, harvest, and the removal of residues. The increase in NDVI values from

December until March represents wheat biomass growth after planting.

https://doi.org/10.1371/journal.pone.0277425.g003
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fields. This is because ZT machinery allows farmers to plant wheat seeds into existing rice stub-

ble, whereas in CT fields rice residue is removed by harvesting or by being incorporated into

the soil through tilling.

To analyze the effectiveness of higher-resolution, readily-available satellite imagery for

detecting tillage practices in smallholder systems, we used images from three different satellite

sensors: 1) Synthetic Aperture Radar (SAR) Sentinel-1 [36], 2) multi-spectral Sentinel-2 [37],

and 3) multi-spectral PlanetScope [38]. We obtained Sentinel-1 and Sentinel-2 data through

Google Earth Engine (GEE) [39] and Planet imagery through the Planet API [40].

We obtained 13 Sentinel-1 C-band Level-1 Ground Range Detected images during our study

period (Table 1). They were acquired on a descending orbit in Interferometric Wide swath

mode (IW). Prior to ingestion into GEE, the data were preprocessed using the Sentinel-1 Tool-

box [41]. Since speckle filtering was not done prior to ingestion, we implemented speckle filter-

ing using the Refined Lee speckle filter code developed by Guido Lemoine (https://code.

earthengine.google.com/2ef38463ebaf5ae133a478f173fd0ab5) and converted backscatter values

to decibels using a logarithmic transformation. The bands and indices we used from Sentinel-1

are shown in Table 2. The intensity cross-ratio (CR) VV/VH is included as previous studies

have shown its utility for differentiating vegetation types [42]. We resampled all Sentinel-1

images to 3 m resolution to match fine-scale Planet data using bilinear interpolation in GEE.

We obtained 11 Sentinel-2 Level-1C Top-Of-Atmosphere (TOA) scenes from GEE for our

defined study period (Table 1). We only selected images that had less than 10% cloud cover,

and visually inspected all selected images to ensure that there was no cloud cover over our field

polygons. We then applied surface reflectance (SR) correction to all tiles in GEE using the radi-

ative transfer emulator Second Simulation of the Satellite Signal in the Solar Spectrum (6S)

[43] and code from Sam Murphy [44] to derive the surface reflectance values for the visible

(blue, green, and red at 10 m), NIR (10 m), red-edge (20 m), and SWIR (20 m) bands. The 6S

algorithm generates interpolated look-up tables (LUTs) under different atmospheric condi-

tions considering solar zenith, ozone, and surface altitude. These LUTs are then used to calcu-

late atmospheric correction coefficients which convert TOA radiance to SR. The bands and

indices that we used from Sentinel-2 are shown in Table 2. We omitted B1, B9 and B10 because

these bands represent atmospheric features, including aerosols, water vapor, and cirrus, and

are not measures of the surface reflectance of land features. Eight common spectral indices

were included as they have been shown to help differentiate vegetation and/or tillage practices

in the previous literature (Table 2). All Sentinel-2 images and bands (10 m and 20 m) were

Table 1. List of acquisition dates of satellite images used in our study.

Dataset Sentinel-1 Sentinel-2 Planet

Sowing season

Peak season

10/03/2017

10/15/2017

10/27/2017

11/08/2017

11/20/2017

12/02/2017

12/14/2017

12/26/2017

10/08/2017

10/23/2017

10/28/2017

11/12/2017

11/22/2017

12/02/2017

12/12/2017

10/08/2017

10/13/2017

10/15/2017

10/24/2017

11/01/2017

11/04/2017

11/07/2017

11/13/2017

11/18/2017

12/08/2017

12/14/2017

01/07/2018

01/19/2018

01/31/2018

02/12/2018

02/24/2018

01/31/2018

02/05/2018

02/15/2018

02/20/2018

01/23/2018

02/03/2018

02/11/2018

02/21/2018

02/27/2018

https://doi.org/10.1371/journal.pone.0277425.t001
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resampled to 3 m resolution to match fine-scale Planet data using bilinear interpolation in

GEE. We used bilinear interpolation as it has been shown to better preserve distributions of

band values compared to other common resampling approaches [45].

We obtained 16 low-cloud Level-3B surface reflectance Planet images (Table 1) that had

been atmospherically corrected by Planet using the 6S radiative transfer model with ancillary

data from MODIS [38]. We defined low-cloud images as those with less than 5% cloud cover,

and we further visually inspected all filtered images to ensure that there was no cloud cover

over our field polygons. All individual image tiles were mosaicked using color matching of the

overlapping regions using the raster package [46] in R Project Software [47]. We overlaid all

Planet imagery over Sentinel-2 imagery and used visual inspection to ensure the georeferen-

cing of these two datasets matched as previous studies have found that early iterations of Planet

data needed additional georeferencing [19]. We found that the images aligned well and did not

need additional georeferencing. Previous studies have shown that there is still noise remaining

in the Planet surface reflectance corrected data downloaded directly from Planet [19, 20].

Thus, we conducted an additional correction by histogram stretching Planet data to match

Sentinel-2 imagery using methods from Jain et al. [19] (S1 Fig). The bands and indices that we

used from Planet are shown in Table 2. We computed the same indices as those calculated

from Sentinel-2 using the red, green, and NIR bands (Table 2).

Methods

Sampling strategy, feature selection, and model development

We used random forest (RF), an ensemble-based algorithm, to classify ZT versus CT fields.

Previous studies have shown that random forest often leads to high classification accuracies

Table 2. Band and index information for the three sensors used in this study.

Sensor Spectral Index & Band Description (Mean Wavelength: μm) Reference

Sentinel-1 VV

VH

vertical transmit/vertical receive

vertical transmit/horizontal receive

CR Log ratio of (VV/VH) [42]

Sentinel-2

B2

B3

B4

B5

B6

B7

B8

B8A

B11

B12

Blue (0.490)

Green (0.560)

Red (0.665)

Red Edge 1 (0.705)

Red Edge 2 (0.740)

Red Edge 3 (0.783)

NIR (0.842)

Red Edge 4 (0.865)

SWIR 1(1.610)

SWIR 2 (2.190)

NDTI

CRC

NDVI

GCVI

OSAVI

NDI5

NDI7

STI

(SWIR1 –SWIR2) / (SWIR1 + SWIR2)

(SWIR1 –Green) / (SWIR1 + Green)

(NIR—Red) / (NIR + Red)

(NIR / Green) − 1

(NIR—Red) / (NIR + Red + 0.16)

(NIR—SWIR1) / (NIR + SWIR1)

(NIR–SWIR2) / (NIR + SWIR2)

SWIR1 / SWIR2

[48]

[49]

[50]

[51]

[52]

[48]

[48]

[53]

Planet B1

B2

B3

B4

Blue (0.485)

Green (0.545)

Red (0.630)

NIR (0.820)

GCVI

OSAVI

NDVI

(NIR / Green) − 1

(NIR—Red) / (NIR + Red + 0.16)

(NIR—Red) / (NIR + Red)

[51]

[49]

[50]

https://doi.org/10.1371/journal.pone.0277425.t002
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with less computation time compared to other active learning models, such as support vector

machines [54]. For training and validation, we used 70% of the field polygons as our training

data and 30% of the field polygons as our validation data. These validation polygons were

completely separate from those polygons used to train, and provide an independent source of

data for validation. To ensure even representation in our training dataset regardless of field

size, we randomly sampled twenty pixels from each field; for fields that were smaller than

twenty pixels, we considered all available pixels within that field. In addition, we sampled an

equal ratio of ZT to CT fields in both our training and validation datasets. To reduce the effect

of multicollinearity on our analyses given the large number of features considered in our mod-

els, we removed highly correlated features (r> 0.9) using the caret package [55] in R Project

Software. We set the number of trees for RF parameters as 500 and the number of features as
p
p, where p equals the number of features in the dataset. All RF classifier operations were run

using the package randomForest [56] in R Project Software. The input datasets for all seven

models for sowing season and full season analyses are shown in Table 3.

We evaluated our model using bootstrap analysis for 400 iterations as previous work has

shown this leads to results with a 95% confidence level and avoids a power loss of more than

1% [57]. Given that each bootstrap iteration produces a different set of selected features, we

averaged results across all 400 models (average number of selected features shown in Table 3).

To calculate variable importance, we identified the top five most important features as ranked

by the average mean decrease in accuracy. Given that all 400 bootstrap models produced dif-

ferent results, we present the five most important variables found across all models by averag-

ing the mean decrease in accuracy for each variable across all models, and ranking them from

the greatest to smallest value.

Table 3. Feature components of different sensor and sensor combinations and full and sowing season models.

Model Sensor & Sensor combinations No. of Features No. of Selected Features Feature Components

Full Model Sentinel-1 39 15 (2 bands + 1 index) × 13 dates

Sentinel-2 198 56 (10 bands + 8 indices) × 11 dates

Planet 112 34 (4 bands + 3 index) × 16 dates

Sentinel-1 + Sentinel-2 237 61 (2 bands + 1 index) × 13 dates +

(10 bands + 8 indices) × 11 dates

Sentinel-1 + Planet 151 45 (2 bands + 1 index) × 13 dates +

(4 bands + 3 index) × 16 dates

Sentinel-2 + Planet 310 77 (10 bands + 8 indices) × 11 dates+

(4 bands + 3 index) × 16 dates

Sentinel-1+ Sentinel-2 + Planet 349 88 (2 bands + 1 index) × 13 dates +

(10 bands + 8 indices) × 11 dates+

(4 bands + 3 index) × 16 dates

Sowing Model Sentinel-1 24 11 (2 bands + 1 index) × 8 dates

Sentinel-2 126 38 (10 bands + 8 indices) × 7 dates

Planet 77 25 (4 bands + 3 index) × 11 dates

Sentinel-1 + Sentinel-2 150 41 (2 bands + 1 index) × 8 dates +

(10 bands + 8 indices) × 7 dates

Sentinel-1 + Planet 101 30 (2 bands + 1 index) × 8 dates +

(4 bands + 3 index) × 11 dates

Sentinel-2 + Planet 203 49 (10 bands + 8 indices) × 7 dates+

(4 bands + 3 index) × 11 dates

Sentinel-1+ Sentinel-2 + Planet 222 55 (2 bands + 1 index) × 8 dates +

(10 bands + 8 indices) × 7 dates+

(4 bands + 3 index) × 11 dates

https://doi.org/10.1371/journal.pone.0277425.t003

PLOS ONE Mapping field-level tillage practices in smallholder systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0277425 November 28, 2022 8 / 17

https://doi.org/10.1371/journal.pone.0277425.t003
https://doi.org/10.1371/journal.pone.0277425


Impact of spatial, temporal, and spectral resolution

To better understand the effect of improved spatial, temporal, or spectral resolution on classifi-

cation accuracies, we examined the individual contribution of each in our models. First, to

assess the contribution of spatial resolution on classification accuracies, we resampled the spa-

tial resolution of Planet (3 m) to 10 m to match the spatial resolution of Sentinel-2 imagery

using bilinear interpolation in GEE. We reran our single sensor Planet model using the aggre-

gated, coarser resolution (10 m) data, and compared model results with those from the model

using the original Planet data (3 m). Second, to identify the impact of improved temporal reso-

lution on classification accuracy, we reduced the number of images used in our Planet analysis

to only those dates that were similar to those available with Sentinel-2 data (Table 1). We then

reran our single sensor Planet model using these limited dates (7 dates), and compared the

results of this model with those from the original Planet model that included all available

image dates (11 dates). Finally, to assess the impact of increased spectral information on classi-

fication accuracies, we reduced the number of bands and indices used in the single sensor Sen-

tinel-2 model to match those used in the single sensor Planet model (Table 2). We then reran

our single sensor Sentinel-2 model using these limited spectral bands and indices (7 bands and

indices), and compared the results of this model with those from the original Sentinel-2 model

that included all available bands and indices (18 bands and indices). We focused only on the

sowing period for running these comparison models.

Results

Identifying which sensor or sensor combination results in the highest

accuracies and variable importance

Table 4 shows mean overall accuracy and 95% confidence intervals from each of our models

for the full study period. Considering which sensor and sensor combinations led to the highest

classification accuracy (research question 1), we found that for single sensor models, Planet led

to the best performing model. The Planet model obtained accuracies that were 3–5% higher

than the next best performing single sensor model that used Sentinel-2 data. Findings indi-

cated that the model that used only Sentinel-1 data performed poorly, with accuracies at least

20% lower than models using Sentinel-2 or Planet. Combining Sentinel-2 data and Planet data

led to higher accuracies than individual sensor models, though this two-sensor model had an

increase in accuracy of only 1% compared to the Planet model. Adding Sentinel-1 data did lit-

tle to improve classification accuracy, and in many cases reduced overall accuracy compared

to individual sensor models that used Sentinel-2 or Planet imagery, similar to Azzari et al. [14].

The highest classification accuracy in both the sowing period and full period models was

obtained with the three-sensor model. The accuracies of the three sensor models, however,

Table 4. Classification results and 95% confidence intervals for single and multiple sensor models for the full

study period (Oct—Mar).

Sensor & Sensor combinations Full Model Overall Accuracy Width of 95% Confidence Interval

Sentinel-1 62.28% 1.69%

Sentinel-2 83.24% 2.37%

Planet 86.55% 1.77%

Sentinel-1 + Sentinel-2 82.65% 1.86%

Sentinel-1 + Planet 86.39% 1.81%

Sentinel-2 + Planet 87.61% 1.85%

Sentinel-1 + Sentinel-2 + Planet 87.71% 1.88%

https://doi.org/10.1371/journal.pone.0277425.t004
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were only 1% better than the single sensor model that used Planet data. It is important to note

that when considering 95% confidence intervals, many of the differences between the best per-

forming single sensor and multiple sensor models were not significant. Most importantly, the

Planet single sensor model performed similarly to most of the two sensor models and the three

sensor model. The Planet single sensor model, however, did outperform the single sensor Sen-

tinel-1 and Sentinel-2 models, especially for the sowing season models.

Table 5 shows the features that ranked in the top five most important of all features consid-

ered for each sensor and sensor combination for the full study period. For the models using

PlanetScope data, band 1 (blue) from October 8th was always the most important feature, fol-

lowed by band 1 from October 15th and GCVI from October 15th. Considering models built

using Sentinel-2 data, important features ranged throughout the growing season, from early

October to the end of January. Band 2 (blue) appeared to be the most common band ranked in

the top five across all models that included Sentinel-2. Regarding the Sentinel-1 models,

images similarly spanned the length of the growing season, from mid-November until late Jan-

uary. When incorporating multiple sensor data into classification models, Planet bands were

largely selected as the top most important variables when the sensor was included in multi-

sensor models. Bands from Sentinel-2 were the second most frequently selected important var-

iables, though they were always less important than Planet variables when both sensors were

included. Bands from Sentinel-1 never appeared in the top most important variables in multi-

sensor models.

The accuracy of using only early season imagery

Considering whether using only images from the sowing period could lead to high classifica-

tion accuracies (research question 2), we found that models that used only image dates from

the sowing period obtained accuracies that were very similar to the full season model, usually

within a 1% difference that was smaller than the 95% confidence intervals (Table 6). This was

especially true for the single or multiple sensor models that included Planet data. The biggest

differences between the sowing versus full period models were seen for models that used

Table 5. Top five importance features for single and multiple sensor models for the full study period (Oct—Mar).

S1 S2 PS S1+PS S2+PS S1+S2 PS+S1+S2

1 1120_VH 0131_B2 1008_B1 PS_1008_B1 PS_1008_B1 S2_0131_B2 PS_1008_B1

2 0131_VH 1008_B2 1015_B1 PS_1008_GCVI PS_1015_B1 S2_1112_B5 PS_1015_B1

3 1202_VH 1023_GCVI 1008_GCVI PS_1015_B1 PS_1008_GCVI S2_1023_GCVI PS_1008_GCVI

4 0131_VV 1112_B5 1104_B4 PS_1015_GCVI S2_0131_B1 S2_1008_B2 S2_0131_B2

5 1120_CR 0131_CRC 1113_B1 PS_1113_B1 S2_1008_B2 S2_0131_CRC PS_1015_GCVI

https://doi.org/10.1371/journal.pone.0277425.t005

Table 6. Classification results and 95% confidence intervals for single and multiple sensor models for the sowing

study period (Oct—Dec).

Sensor & Sensor combinations Sowing Model Overall Accuracy Width of 95% Confidence Interval

Sentinel-1 61.24% 1.79%

Sentinel-2 80.8% 2.42%

Planet 85.78% 1.76%

Sentinel-1 + Sentinel-2 79.95% 1.99%

Sentinel-1 + Planet 86.03% 1.88%

Sentinel-2 + Planet 86.93% 1.93%

Sentinel-1 + Sentinel-2 + Planet 86.84% 1.90%

https://doi.org/10.1371/journal.pone.0277425.t006
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Sentinel-2 data, with overall accuracies decreasing by approximately 3% for the sowing date

model compared to the full model. These results suggest that using only images during the

sowing season is as effective as using images throughout the growing season for mapping till-

age practices in this region.

The impact of improved spatial, temporal, and spectral resolution on

classification accuracies

Finally, considering the impact of improved spatial, temporal, and spectral resolution

(research question 3), we found that the model that used Planet satellite data aggregated to 10

m resolution led to a reduction in accuracy of 4.5% compared to the original Planet model

using 3 m resolution data (Table 7). This result suggests that improved spatial resolution (3 m

vs 10 m) moderately increases the accuracy of mapping field-level tillage practices. With regard

to temporal resolution, we found that the model that used 7 Planet scenes had a reduction in

accuracy of approximately 1% compared to the Planet model that used all 11 available scenes

(Table 7). This result shows that increased temporal resolution from Planet does little to

improve classification accuracy. Finally, with respect to spectral resolution, we found that the

model that used Sentinel-2 data with only the bands and indices available with Planet led to a

reduction in accuracy of 0.5% compared to the original Sentinel-2 model (Table 7). This result

suggests that the increased spectral resolution of Sentinel-2 does not play a significant role in

mapping field-level tillage practices. Considering 95% confidence intervals, only the difference

due to a change in spatial resolution (10 m vs 3 m) was significant.

Discussion

Our study examined which satellite sensor and sensor combinations as well as time periods

resulted in the highest classification accuracies for mapping tillage practices for smallholder

farms in the Eastern Indo-Gangetic Plains in India. We found that models that included Planet

data led to the highest classification accuracies, and that models that included Sentinel-1 led to

the lowest classification accuracies. Though previous studies have found that using multiple

sensors can lead to more accurate classification of tillage practices [14, 58], our results showed

that the best performing two sensor and three sensor models only improved accuracies by

approximately 1% compared to models that only used Planet data, and this difference was not

significant considering 95% confidence intervals. This suggests that in the case of smallholder

farms, Planet data alone may be able to effectively map tillage practices, at least during dry

growing seasons with limited cloud cover as found in our study. Considering time periods,

models built using data from the sowing period were as effective as models that used data

throughout the growing season. This suggests that it may be possible to map tillage practices

with high accuracy after sowing has ended, providing the ability to produce real-time, within

season maps of zero tillage practices at scale. Our results broadly show that tillage practices can

Table 7. Classification results and 95% confidence intervals for low and high spatial, temporal, and spectral resolution models.

Changing

Resolution

Low Resolution Model Overall

Accuracy

Width of 95% Confidence

Interval

High Resolution Model Overall

Accuracy

Width of 95% Confidence

Interval

Spatial 81.32% (Planet images aggregated to 10

m)

2.33% 85.78% (Planet images at 3 m) 1.76%

Temporal 84.55% (7 Planet scenes) 1.84% 85.78% (11 Planet scenes) 1.76%

Spectral 80.17% (Sentinel-2 images with 7 bands

and indices)

2.33% 80.80% (Sentinel-2 images with 18 bands

and indices)

2.42%

https://doi.org/10.1371/journal.pone.0277425.t007
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be mapped with high accuracy (> 86%) when using relatively new high-resolution, readily

available satellite imagery, even in heterogeneous, smallholder systems.

We believe that the main reason Planet imagery performed better than imagery from other

sensors is due to its higher spatial resolution. This is because our analyses that examined the

individual effect of improved spatial, temporal, and spectral resolutions found that reduced

spatial resolution led to the greatest change in model accuracies (4.5% compared to ~ 1%). The

reason improved spatial resolution is likely important for model accuracy is because Planet’s

improved spatial resolution of 3 m leads to fewer mixed pixels than when using coarser Senti-

nel-2 imagery (10 m resolution; Fig 4; S2 Fig) given the small size of fields within our study

region (< 0.3 ha). Interestingly, even though Planet also has improved temporal coverage com-

pared to Sentinel-2, this increased temporal availability did not largely increase accuracy (~

1%). Sentinel-2 data led to models with moderate accuracy, and these models were ~5% lower

in accuracy compared to Planet models. Overall we found that Sentinel-1 led to low classifica-

tion accuracies and did little to improve multi-sensor model accuracies. Although Sentinel-1

provides complementary information, such as surface moisture and roughness, to optical data,

optical data are much better able to discriminate differences between zero and conventional

tillage. Therefore, models that include Sentinel-1 imagery probably led to reduced accuracy

compared to optical-only models (Table 4) because less helpful radar data was selected at some

tree nodes in these models. These results are similar to those found by Azzari et al. [14], who

mapped tillage practices across the United States Midwest.

We also found that models that relied on data from the sowing season had similar accura-

cies to models that used data from the full study period. The importance of early season imag-

ery was also evidenced in variable importance estimates for the full growing season (Table 5).

Particularly for models that used Planet, early season imagery from October and early Novem-

ber were the most important variables. This suggests that the factors that are most important

for distinguishing between ZT and CT likely occur during the field-preparation and sowing

periods. Mechanistically this makes sense given that ZT fields are often covered in crop residue

in this region, while CT fields are bare. This is because under ZT farmers do not till the soil

Fig 4. The boundaries of two field polygons overlaid on a (A) Planet image (3 m) and (B) Sentinel-2 image (10 m). Sentinel imagery was freely downloaded

from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).

https://doi.org/10.1371/journal.pone.0277425.g004
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and can plant wheat seeds within the remaining rice residue from the previous season. This

residue may lead to higher NDVI values in ZT fields compared to CT fields (Fig 3) due to

remaining green vegetated biomass from the prior rice harvest [59]. Furthermore, we found

that the blue bands from Planet and Sentinel-2 were often the most important predictors, likely

because data from the blue wavelength have been shown to effectively detect soil properties

[60] and distinguish between soil and vegetation cover [61].

When interpreting findings, there are several considerations that should be noted. First, we

predicted only a binary variable of ZT versus CT, instead of a continuous variable representing

tillage intensity. In reality, farmers who practice CT have heterogeneous management, with

farmers varying the number of times they till their fields. Previous studies have found that it is

possible to accurately classify tillage intensity of large-scale farms [14], and future work should

explore whether this is also possible in smallholder systems. Second, we conducted our study

during the largely dry winter growing season which has limited cloud cover compared to

India’s main growing season during the monsoon. It is possible that which sensor(s) lead to

the highest classification accuracies may differ during cloudy seasons where optical image

availability is more limited. Previous studies, for example, have shown that Sentinel-1 becomes

more important for improving classification accuracies during periods of high cloud cover

when optical imagery are unavailable [62]. This is largely because studies have shown that Sen-

tinel-1 C-band data can appropriately detect vegetation phenologies across a wide range of

land-cover types [63, 64], and our data suggest that ZT versus CT fields have distinct vegeta-

tion phenologies (Fig 3), particularly during the early part of the growing season. Third, our

conclusions are only based on the results of one classification model, random forest, and future

studies should assess whether other classification models can lead to improved accuracies.

Finally, our study is limited in spatial and temporal scale; we only applied our analysis to one

cropping system (rice-wheat), in one year (2017–18), and in one region (Arrah district, Bihar).

Future work should examine how generalizable our findings are to other rice-wheat cropping

systems in India and across multiple years. A recent study has shown that Sentinel-2 can be

used to accurately map tillage practices in rice-wheat systems across Northern India over mul-

tiple years [65]. More broadly, future work should assess how generalizable our findings are to

different smallholder farming systems with different cropping patterns in other parts of the

world.

Conclusions

In this study, we assessed the ability of three readily-available, high-resolution sensors (Planet,

Sentinel-2, and Sentinel-1) to detect zero tillage and conventional tillage across smallholder

farming systems in the Eastern Indo-Gangetic Plains in India. We find that it is possible to use

readily-available, high spatial resolution satellite data to map tillage practices of smallholder

farms. In particular, Planet satellite data resulted in high classification accuracy models

(> 86%) and including data from additional sensors did little to improve accuracies. Tillage

practices can also be mapped effectively using only data from the period of sowing, suggesting

that real-time, within season maps of tillage can be produced at scale. Our work highlights the

important role of micro-satellite data to map agricultural characteristics of smallholder farms,

which is exciting given that the temporal resolution of such imagery is only expected to

increase over the coming years as additional satellites are launched.

Supporting information

S1 Fig. Histograms for Sentinel-2 (shown as blue), raw PlanetScope (shown as red), and histo-

gram-matched PlanetScope (shown as grey) for images from October 8, 2017 for the (a) Blue,
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(b) Green, (c) Red, and (d) NIR bands.

(TIF)

S2 Fig. RGB images of Sentinel-2 and PlanetScope with some ZT/CT fields overlaid on

imagery from October, 8, 2017 and VH band image of Sentinel-1 on November, 8, 2017.

(TIF)

S1 File. Survey conducted with farmers in the study.

(DOCX)
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