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A B S T R A C T

The timing of harvesting is crucial for determining crop yield potential as it influences the final stages of the crop 
growth cycle and affects crop grain quality. Early harvesting can lead to yield losses from excessive moisture and 
insufficient dry matter, while delayed harvesting can degrade grain quality due to over-maturation and increased 
susceptibility to weather, pests, and diseases. Accurate monitoring of harvest timing is essential to assess yield 
gaps, support profitable and sustainable farming practices, and optimize agricultural supply chains. However, 
remote sensing-based harvesting date detection methods often suffer from biases due to the inconsistent rela
tionship between end-of-season (EOS) metrics in vegetation index (VI) time series and actual harvesting dates. 
This inconsistency occurs because harvesting decisions are often influenced by human factors such as equipment 
availability, labor constraints, and fuel costs, rather than plant condition alone. In this study, we develop a novel 
Normalized Harvest Phenology Index (NHPI) that integrates the Normalized Difference Vegetation Index (NDVI) 
and the Near-Infrared (NIR) reflectance to accurately monitor whether fields of corn and soybean have been 
harvested. Leveraging the distinct separability of NIR reflectance for corn and soybean before harvesting (se
nescent plants) and after harvesting (crop residue), combined with the contrasting trends between NIR and NDVI 
during this transition, the NIR-to-NDVI ratio amplifies the harvesting signal in its time series, making it a robust 
indicator of harvesting events. As the first spectral index designed for scalable identification of crop harvesting 
stage, the developed NHPI is applied to map harvesting dates for corn and soybean fields across the U.S. Midwest 
from 2020 to 2023 using Landsat and Sentinel-2 imagery via Google Earth Engine (GEE). At the field level, the 
NHPI-based harvesting date estimation method achieves a mean absolute error (MAE) of 4 days and an R2 of 0.85 
when compared against field-recorded harvesting dates, significantly outperforming all advanced harvesting date 
estimation benchmarks (i.e., EOS phenometric-based method, shape model fitting method (SMF), and shape 
model fitting by the separate phenological stage method (SMF-S). The NHPI-based harvesting date mapping also 
shows strong alignment with the state-level cumulative distribution of harvesting dates of the USDA crop 
progress reports, achieving an average MAE of 3 days. Further analysis of NHPI values before and after har
vesting events reveals its strong adaptability to diverse weather conditions at large scales, highlighting its effi
ciency and robustness.

1. Introduction

Food security will face growing challenges in the coming years due to 
increasing population, dwindling farmland, shifts in consumption 
habits, and climate change (Beddington, 2010). In response to these 

evolving conditions, adapting crop management practices will be crucial 
for addressing food security concerns (Liu et al., 2023). As one of the 
major crop management practices, the timing of harvesting is critical for 
ensuring that the grain reaches its highest possible quality and maxi
mizing crop yield (Kusumastuti et al., 2016; Xu et al., 2019). Early 
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harvesting can result in yield losses due to excessive grain moisture and 
insufficient dry matter accumulation, whereas delayed harvesting may 
degrade grain quality due to over-maturation, increased exposure to 
adverse weather, and higher susceptibility to pests and diseases (Kim 
et al., 2024). Furthermore, the timing of harvesting affects a range of 
supply chain activities, including labor distribution, machinery utiliza
tion, storage, processing, logistics, and grain market trading (Mardaneh 
et al., 2021). Harvesting date information is essential for understanding 
real-world farm practices and evaluating management efficiency at 
scale. It also informs models that monitor crop phenology, estimate crop 
yield, and support agricultural carbon accounting (Pugh et al., 2015; 
Zhang and Diao, 2023). As such, accurate detection of harvesting dates 
plays a key role in strengthening agricultural monitoring systems and 
enhancing food system resilience (Chandra et al., 2024).

Field surveying is the most traditional method for collecting crop 
harvesting ground truth data, recording the exact timing when farmers 
harvest their fields, and providing accurate harvesting date information. 
However, conducting these surveys across large geographic regions is 
labor-intensive, time-consuming, and expensive. Remote sensing ad
dresses these limitations by providing extensive geographic coverage, 
rapid observations, and significantly lower costs. Since the 1990s, 
remote sensing time series analysis techniques have been increasingly 
utilized for monitoring crop harvesting (Reed et al., 1994). These 
methods can be broadly classified into three categories: (1) 
phenometric-based detection methods, (2) phenology matching 
methods, and (3) interferometric synthetic aperture radar (InSAR) 
coherence analysis methods.

Phenometric-based detection methods estimate harvesting dates 
using end-of-season (EOS) phenometrics derived from satellite time se
ries of vegetation indices (VIs). These EOS phenometrics are typically 
extracted using specific thresholds (e.g., 10 % or 20 % of the curve 
amplitude) (Chen et al., 2004a; Delbart et al., 2006; Zeng et al., 2020) or 
curve inflection points (e.g., local minima in the rate of curvature 
change) (Diao, 2020; Diao and Li, 2022; Gao et al., 2017; Moulin et al., 
1997; Schwartz et al., 2002; Wu et al., 2017; Zhang et al., 2003). Once 
identified, these EOS metrics are assumed to correspond to the field’s 
harvesting date. However, the accuracy of detected harvesting dates is 
limited due to the inconsistent relationship between VIs-based EOS 
metrics and actual harvesting dates. This inconsistency arises because 
EOS metrics typically correspond to the physiological stage of crop 
senescence, whereas actual harvesting dates are influenced by human 
decisions based on factors such as labor availability, equipment sched
uling, and fuel costs, and may therefore occur at different points along 
the VI trajectory. Consequently, EOS metrics lack a direct physical 
linkage to actual harvesting events, limiting their ability to capture 
variations in farmers’ harvesting practices across space and time (Gao 
and Zhang, 2021). Applying the phenometric-based methods to retrieve 
the EOS metrics across different regions or crop species could thus lead 
to uncertainty and inaccuracy in harvesting date estimation.

Phenology matching methods estimate crop harvesting dates of 
target fields using pre-defined crop reference phenological time series 
and associated reference harvesting dates (Sacks and Kucharik, 2011; 
Diao et al., 2021; Dong et al., 2019; Liu et al., 2022a, 2022b; Shen et al., 
2023; Cao et al., 2024). Representative phenology matching methods 
include the shape model fitting (SMF) method and the hybrid phenology 
matching method (Sakamoto et al., 2010; Diao et al., 2021). These 
methods usually rely on geometrical pattern matching techniques to 
map the reference phenological time series onto the target satellite time 
series by estimating mapping parameters (i.e., temporal shifts and 
scaling factors). These parameters quantify the adjustments required for 
the reference phenological trajectory to best align with the target field’s 
time series. Once aligned, the reference harvesting date of the reference 
phenological time series is transformed using the derived mapping pa
rameters to estimate the harvesting date for the target time series. The 
crop reference phenological time series are typically constructed by 
aggregating Vegetation Index (VI) time series of regional ground 

phenological observations to capture crops’ typical seasonal growth 
patterns. The corresponding reference harvesting date of the time series 
is pre-defined or calibrated using ground harvesting date observing re
cords. As a result, the estimated harvesting dates for the target time 
series are largely determined by the crop reference time series and 
reference harvesting dates (Zeng et al., 2020; Gao and Zhang, 2021; Diao 
et al., 2021). However, these crop phenological references are typically 
created with limited field observations, resulting in a lack of represen
tativeness and accuracy (Sakamoto, 2018a; Diao et al., 2021). This 
limitation is particularly concerning for harvesting date detection, as the 
harvesting process is heavily influenced by human activity, resulting in 
significant variability across locations and years. Obtaining reliable crop 
reference harvesting dates therefore demands more diverse and 
comprehensive field observations than those required for other crop 
phenological stages, which is challenging at large scales.

The third type of methods, InSAR coherence analysis, leverages radar 
satellite data to infer harvesting dates through analyzing coherence 
between successive pairs of radar images to track changes in field con
ditions (Schlund and Erasmi, 2020; Shang et al., 2020; Amherdt et al., 
2021; Pandit et al., 2022). InSAR coherence, calculated as a complex 
correlation coefficient between two adjacent radar images, measures the 
consistency of radar signal phases, which reflects surface stability. 
During harvesting, disturbances to the field surface could reduce surface 
stability and thus cause a drop in coherence value, typically followed by 
a sharp increase as the field stabilizes post-harvest. This characteristic 
pattern enables the identification of harvesting events in the coherence 
time series with defined criteria. This radar-based approach is effective 
particularly in cloudy regions, where optical sensors are limited, as 
radar can penetrate clouds and provide consistent observations 
regardless of weather or lighting conditions (Liu et al., 2022a, 2022b). 
Sentinel-1 is the most commonly used data source for InSAR-based 
agricultural monitoring, providing a revisit frequency of 6 to 12 days 
depending on geographic location. However, factors like rapid crop 
phenological changes, management practices, and surface moisture 
changes around the harvesting period can influence radar signal 
behavior, potentially resulting in low coherence values followed by high 
ones. This can produce signals similar to those detected by the har
vesting identification criteria, leading to potential false positive de
tections (Löw et al., 2021, 2024). Additionally, inherent noise in InSAR 
data can disrupt phase consistency, complicating accurate coherence 
estimation and thus the identification of the harvesting date. Small 
fluctuations or noises in the coherence time series can affect harvesting 
event detection, leading to biased results (Xu et al., 2020; Nikaein et al., 
2021; Wang et al., 2022).

The inconsistent relationship between EOS metrics and harvesting 
dates, the difficulty in defining phenological references with tailored 
reference harvesting dates, and the inherent noise in InSAR coherence 
data collectively highlight the limitations of current methods for accu
rate detection of crop harvesting dates. Field harvesting events involve 
significant surface changes, marked by the transition from crop-covered 
fields to crop residuals/bare soil, which likely exhibit unique patterns in 
certain spectral characteristics. Yet the spectral dynamics associated 
with these changes remain poorly understood, limiting the development 
of consistent and interpretable indicators across different regions and 
crop types. Jiang et al. (2024) recently proposed a machine learning- 
based approach that leverages all eight spectral bands and derived 
indices from PlanetScope imagery as input features to detect harvesting 
events. While this data-driven method shows potential, its reliance on 
large, high-quality training datasets limits its scalability and 
generalizability.

By analyzing a diversity of optical spectral dynamic changes during 
the harvesting season, we develop a novel Normalized Harvest 
Phenology Index (NHPI) to accurately retrieve crop harvesting dates. 
The NHPI is designed to achieve three key objectives: (1) enhance the 
spectral dynamic changes associated with field surface changes per
taining to harvesting, (2) accurately characterize the timing of the 
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harvesting event from NHPI time series, and (3) facilitate robust, large- 
scale harvesting date mapping on the Google Earth Engine (GEE) plat
form. The proposed NHPI index is leveraged to generate harvesting date 
maps in the U.S. Midwest for corn and soybean under diverse climate 
conditions, landscape complexities, and cropping systems. The perfor
mance of the NHPI is evaluated upon comparison with three advanced 
benchmark methods: the EOS phenometric-based method (Diao, 2020), 
the shape model fitting (SMF) method (Sakamoto et al., 2010), and the 
shape model fitting by the separate phenological stage (SMF-S) method 
(Liu et al., 2022a, 2022b).

2. Study area and data

2.1. Study area

The study area spans 12 major agricultural states in the U.S. Mid
west: Iowa (IA), Illinois (IL), Nebraska (NE), Minnesota (MN), Indiana 
(IN), Ohio (OH), South Dakota (SD), North Dakota (ND), Kansas (KS), 
Missouri (MO), Michigan (MI), and Wisconsin (WI) (Fig. 1). The U.S. 
Midwest is a vital region for global food production, dominated by the 
cultivation of corn and soybean as the primary crop species. The Mid
west accounts for approximately 35 % of global corn production and 
about 31 % of global soybean production (Lobell et al., 2014). The di
versity of environmental conditions in this region, including variations 
in climate, soil types, and farm management practices, creates an ideal 
setting for evaluating large-scale harvesting date estimation methods. 
The study period spans from 2020 to 2023.

2.2. Data

To analyze the optical spectral dynamical change before and after 
harvesting events, we conduct field surveys in Champaign County, IL, 
during the 2022 and 2023 harvesting seasons, to obtain ground truth 

information on field conditions (Fig. S1). Surveys are conducted every 
three days to record field statuses, including harvesting statuses and 
tillage conditions. The dataset includes records for 104 soybean and 107 
corn parcels in 2022, and 105 soybean and 110 corn parcels in 2023. 
These field parcels span a range of soil types and microclimatic condi
tions within the county, capturing variability that may drive differences 
in harvesting decisions and providing a comprehensive dataset for 
interpreting spectral change patterns. On average, monitored corn fields 
are approximately 25.8 ± 18.0 ha in size, while soybean fields are about 
20.8 ± 14.0 ha. Approximately half of the surveyed fields experience 
tillage operations during the observation period.

To evaluate the performance of our proposed NHPI-based harvesting 
date estimation method and three advanced benchmark methods at 
large scale, we utilize field-level corn and soybean harvesting data from 
Beck’s Hybrids, a well-known agricultural seed company that publishes 
crop yield and management data. The dataset is publicly accessible at 
https://www.beckshybrids.com/Research/Yield-Data. The data are 
widely distributed across the U.S. Midwest, with the exception of ND 
(Fig. 1). This dataset includes 161 soybean fields in 2021, 253 in 2022, 
and 263 in 2023, along with 367 corn fields in 2021, 446 in 2022, and 
479 in 2023.

Besides the field-level data, we further utilize the Crop Progress 
Report (CPR) data (USDA-NASS, 2024) to assess the harvesting date 
mapping capability of our proposed NHPI-based method at state level. 
This dataset provides weekly state-level cumulative statistics on major 
crops (e.g., corn and soybean) when they reach specific phenological 
stages of the study region, including key stages like maturity and har
vesting. Additionally, to ensure our analysis focuses specifically on corn 
and soybean, we use the Cropland Data Layer (CDL), an annual crop type 
mapping dataset across the U.S., to identify the pixels of corn and soy
bean within the study area (Boryan et al., 2011). By aggregating NHPI- 
based harvesting date mapping results for corn or soybean to the state 
level annually, we compare NHPI-based results with CPR data and 

Fig. 1. Spatial distribution of corn and soybean harvesting date records from Beck’s datasets (2021− 2023) across 12 U.S. Midwestern states. Yellow points indicate 
recorded corn harvest dates, while green points represent recorded soybean harvest dates. The top-left inset map shows the geographic extent of the study region (in 
red) in North America. The bottom-left inset map highlights the spatial coverage of corn and soybean fields within the study area based on the 2022 Cropland Data 
Layer. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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evaluate the method’s accuracy and robustness across diverse agricul
tural landscapes in the U.S. Midwest.

The primary satellite imagery used for harvesting date estimation 
includes imagery from Landsat 7, 8, and 9, along with Sentinel-2 on 
GEE. We use Landsat and Sentinel-2 imagery from 2020 to 2023 to align 
with the study period. Landsat imagery offers a spatial resolution of 30 
m, while Sentinel-2 provides higher spatial resolutions of 10 m for 
visible and near-infrared bands and 20 m for red-edge and two short
wave infrared bands. Sentinel-2 data are resampled to 30 m using the 
default nearest neighbor method on GEE to match the spatial resolution 
of Landsat imagery, ensuring consistency in spatial resolution and 
alignment for the following analysis. We utilize Landsat and Sentinel-2 
imagery to retrieve the crop harvesting dates at the field level, with 
the farm field sizes in the U.S. Midwest averaged around 50 acres (Yan 
and Roy, 2016). The temporal resolutions of these datasets, with a 16- 
day revisit interval for each Landsat sensor and a 5-day interval for 
Sentinel-2, enable the construction of a relatively dense time series that 
increases the likelihood of capturing critical harvesting events, even 
with occasional cloud cover. Observation availability improves after 
2022 with the integration of Landsat 9, which complements Landsat 8 to 
reduce the revisit interval to 8 days, further enhancing temporal 
coverage. To further enhance the consistency of observations, we 
harmonize the Sentinel-2 and Landsat datasets on GEE using the least 
square method, which reconciles their spectral and radiometric differ
ences (Roy et al., 2016; Zhang et al., 2018; Fan et al., 2023). This 
harmonization creates a seamless dataset that enables more reliable and 
continuous tracking of crop growth and harvesting activities. As the 
official Harmonized Landsat-Sentinel (HLS) product is not currently 
available on the GEE platform, we instead perform our own harmoni
zation within GEE to take full advantage of its data access and processing 
capabilities.

To calibrate the SMF and SMF-S benchmark methods (Sakamoto 
et al., 2010; Sakamoto, 2018b; Diao et al., 2021), we further utilize the 
MODIS MCD43A4 (version 6) nadir Bidirectional Reflectance Distribu
tion Function (BRDF) adjusted reflectance product. This dataset 

provides consistent daily surface reflectance data at a 500-m resolution, 
which enables the building of high-quality satellite time series for 
characterizing crop growth patterns at a regional scale. We also evaluate 
the impact of weather conditions on spectral reflectance dynamics 
during the harvesting period using the DAYMET dataset (Thornton et al., 
2020), which provides daily precipitation and temperature data at a 1- 
km resolution. Precipitation data is specifically analyzed to under
stand rainfall’s impact on spectral reflectance and index values, as water 
can significantly alter surface characteristics.

3. Method

In this study, we develop a novel Normalized Harvest Phenology 
Index (NHPI) that combines the Normalized Difference Vegetation Index 
(NDVI) and the Near-Infrared (NIR) reflectance to enhance the spectral 
dynamic changes associated with field surface changes pertaining to 
harvesting. As shown in Fig. 2, the development of NHPI begins with a 
spectral dynamic analysis using Landsat and Sentinel-2 imagery. This 
analysis is guided by field survey data collected in Champaign County 
(2022− 2023), which provides insights into field conditions before and 
after harvest. The NHPI is developed by first examining unique spectral 
dynamics across multiple spectral bands during the corn and soybean 
harvesting season. This analysis identifies NIR as a distinct indicator of 
harvest timing because of its sensitivity to the transition from senescent 
plants to crop residue during harvesting events and its low susceptibility 
to rainfall interference. Additionally, NIR aligns with NDVI’s trend 
before harvest and exhibits an opposite trend after harvest, driven by 
changes in leaf structure and the physical properties of crop residue. As 
crops enter senescence, the breakdown of internal leaf structures re
duces NIR scattering and lowers reflectance. After harvest, the presence 
of dry, fibrous residue increases NIR reflectance, while NDVI continues 
to decline during this transition. Building on these findings, NIR and 
NDVI are integrated by calculating their ratio to construct the NHPI. 
This integration amplifies harvest-related signals, resulting in a more 
robust and reliable index for identifying whether fields have been 

Fig. 2. Workflow of this study illustrating the development of the NHPI and its application in harvesting date mapping.
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harvested. The innovation of NHPI lies in not only its unique spectral 
characteristic design but also its computational efficiency. Through the 
GEE platform, we construct NHPI time series with Landsat and Sentinel- 
2 imagery to map harvesting dates, defined as the first date when NHPI 
exceeds a predefined threshold, for corn and soybean fields from 2020 to 
2023 across the U.S. Midwest. The threshold is calibrated using the Il
linois 2023 subset of the Beck dataset. To evaluate the performance of 
the NHPI-based method at the field level, we compare NHPI-estimated 
harvesting dates with ground-truth data from the Beck dataset across 
the U.S. Midwest and benchmark the NHPI against three advanced 
harvesting date estimation methods. Furthermore, we assess the NHPI at 
the state level by comparing the cumulative distributions of NHPI- 
generated harvesting dates with those recorded in the CPRs, providing 
an additional layer of validation for its large-scale applicability. The 
codes are open source: https://github.com/rssiuiuc/NHPI/.

3.1. Development of normalized harvest phenology index (NHPI)

3.1.1. Temporal signature analysis of spectral reflectance
Based on field observations in Champaign, IL, we identify a typical 

sequence of three stages: crop senescence (stage 1), crop residue (stage 
2), and post-harvest tillage (stage 3), as illustrated with representative 
corn and soybean fields in Fig. 3. The fields shown in Fig. 3 are selected 
as representative examples because their harvesting and tillage dates are 
well documented, and they have a high density of cloud-free observa
tions during the late growing season, allowing for a clear depiction of the 
spectral transitions surrounding harvest. Similar patterns are also 
observed across many other fields. In the pre-harvest stage, fields are 

largely covered by senescent crops with drying foliage, creating a coarse 
texture for the field surface. During harvest, machinery removes the 
crops, leaving a smoother layer of residue spread across the surface. 
Depending on the tillage practice in the following weeks, some fields 
may be tilled, exposing bare soil, while other fields retain the residue 
layer. Based on harmonized Landsat and Sentinel-2 imagery time series 
(illustrated in Section 3.2), corn and soybean harvests are both char
acterized by a sharp increase in reflectance across all spectral bands 
immediately after harvest, with a subsequent decrease if post-harvest 
tillage occurs. This observed spike in reflectance is likely due to the 
exposure of crop residue after stalk removal, as its fibrous texture and 
high lignin and cellulose content scatter more light than senescent 
vegetation. In contrast, senescent vegetation reflects less light due to the 
structural breakdown of leaf tissues and increased shadowing within the 
canopy. When post-harvest tillage practice removes the residue and 
exposes bare soil, the reflectance drops to lower levels, comparable to 
that of senescent crops before harvest. In conclusion, the sharp increase 
in spectral reflectance observed during the harvest season is a direct and 
unique result of the harvesting of corn and soybean, which serves an 
effective indicator for detecting the field harvesting dates.

To identify the most effective spectral indicator for detecting har
vesting events, we further investigate the differences in spectral reflec
tance patterns across crop stages and spectral bands of these field 
observations. As shown in Fig. 4, senescent crops and post-harvest 
tillage bare soil have similar reflectance. The contrast between crop 
residue and senescent plants is more evident in the NIR (wavelength 
around 800 nm) and shortwave infrared (SWIR) bands, including SWIR1 
(wavelength 1100–1700 nm) and SWIR2 (wavelength 2000–2500 nm), 

Fig. 3. Spectral reflectance and NDVI time series derived from harmonized Landsat and Sentinel-2 imagery for two representative fields, corn (a) and soybean (b), 
throughout the growing season. The figure also includes corresponding field photos depicting three key stages around harvesting: stage 1: crop senescence, stage 2: 
crop residue, and stage 3: post-harvest tillage.
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than in the visible spectrum. In the NIR band, healthy plants exhibit high 
reflectance due to their internal leaf structures, composed of cell walls 
and air spaces, which efficiently scatter NIR light. As plants enter 
senescence stage, these structures deteriorate, with cell walls losing 
their integrity and air spaces within the leaf tissue diminishing. This 
structural breakdown reduces the scattering of NIR light, leading to 
lower reflectance and increased light absorption. As senescent plants 
transition to crop residue during harvesting, their tissues change from 
partially broken-down structures to dry, fibrous, and fragmented ma
terial. This shift leads to higher NIR reflectance due to the loss of 
organized plant structures, the dominance of reflective fibers (e.g., 
lignin and cellulose) in crop residue, and the increased scattering from 
its rough and fragmented surfaces (Daughtry and Hunt, 2008; Baldocchi 
et al., 2020). In the SWIR band, reflectance is predominantly influenced 
by water content due to the strong absorption of SWIR light by water 
molecules. Senescent crops, which retain residual moisture, exhibit 
moderate reflectance in this spectral range, as the remaining water ab
sorbs a significant portion of the incoming radiation. In contrast, crop 
residue, characterized by its dry, fibrous composition and fragmented 
surface, reflects more SWIR light due to the absence of moisture and 
enhanced scattering properties. Tilled field typically exhibits lower 
reflectance, as its optical properties are influenced by soil moisture, 
organic matter, and mineral composition, which collectively contribute 
to greater light absorption in this spectral region (Hively et al., 2021). 
This strong separation in NIR and SWIR reflectance between pre-harvest 
senescent plants and post-harvest residue highlights the potential of 
these bands as indicators for identifying harvesting events.

3.1.2. Design of NHPI
Building on the analysis, we develop the NHPI to estimate harvesting 

dates by detecting the transition from senescence plant to crop residue 
from satellite observations. The Harvest Phenology Index (HPI) is 
defined as the ratio of NIR reflectance to NDVI. To ensure numerical 
stability, we assume that all observations have NDVI values greater than 
zero when calculating HPI, as the index is designed for cropland har
vesting analysis and cropland pixels typically exhibit positive NDVI 
values. The HPI is calculated as follows: 

HPI(t) =
NIR(t)

NDVI(t)
(1) 

The normalized HPI (NHPI) is expressed as: 

NHPI(t) =
HPI(t) − HPImin(tstart , tend)

HPImax(tstart , tend) − HPImin(tstart , tend)
(2) 

where HPImin(tstart , tend) and HPImax(tstart , tend) represent the minimum 
and maximum HPI values observed during the harvesting window [tstart ,

tend], respectively. Within this window, the HPI time series is normalized 
to a 0–1 scale (Eq. (2)). The harvesting window is defined as the period 
starting from the timing of middle of senescence (MOS) metric, identi
fied as the point where NDVI decreases to 50 % of its amplitude (the 
difference between maximum and minimum NDVI values during the 
senescence phase), to the two months afterward (Fig. 5). This definition 
is informed by harvesting dates of extensive fields in Beck’s field-level 
data across the U.S. Midwest, which shows that the intervals between 
MOS and actual harvesting dates consistently fall within this two-month 
range. Defining this harvesting window eliminates the interference from 
signals unrelated to the harvesting period to improve the detection ac
curacy and efficiency.

We employ NIR and NDVI for devising NHPI based on three key 
considerations. First, the NIR band offers stronger contrast between crop 
residue and senescent plants compared to other spectral bands (Fig. 4), 
making it more effective in distinguishing field conditions before and 
after harvesting. Second, the pre- and post-harvest trends in NIR and 
NDVI values exhibit distinct and contrasting patterns, enhancing the 
precision and reliability of harvesting event detection when analyzed 
through their ratio. Before harvesting, NIR and NDVI follow similar 
decreasing patterns, keeping NHPI values low and stable during senes
cence. After harvesting, NIR reflectance increases sharply while NDVI 
decreases, resulting in a significant rise in NHPI that effectively signals 
the harvesting event (Fig. 5). The decrease in NDVI occurs as the 
removal of senescent plants further reduces chlorophyll content and 
photosynthetic activity, exposing non-vegetative surfaces (i.e., soil or 
crop residue). Third, NIR is less sensitive to variations in water content 
than SWIR, reducing the interference from rainfall and making it a more 
reliable indicator across different moisture conditions. In conclusion, 
NHPI effectively highlights the harvesting event, displaying relatively 
low values prior to harvest and significantly elevated values afterward 
as shown in Fig. 5. Harvesting can be detected when NHPI exceeds a 
specified threshold, which signals the occurrence of a harvesting event.

3.2. Workflow of harvesting date mapping using NHPI

The entire workflow of utilizing the NHPI to map corn and soybean 
harvesting dates across the U.S. Midwest (i.e., data harmonization, data 
quality control, index time series generation, and harvesting date 
detection) is conducted on GEE using its parallel matrix computation 
capabilities (Fig. 6). Due to the computational limits of GEE to regular 

Fig. 4. Spectra for three key stages during the harvesting season for corn and soybean, derived from field observations and harmonized Landsat and Sentinel-2 time 
series data. These stages include senescent crops prior to harvest, crop residue immediately after harvest, and cropland following tillage. The spectral patterns are 
based on field survey data collected from 217 corn fields and 209 soybean fields in Champaign, IL. Error bars indicate one standard deviation across the sampled 
field parcels.
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users, we process data on a county-by-county basis and later merge the 
results to create the final Midwest-wide harvesting date product.

Specifically, the first step is data harmonization, which ensures 
consistency across sensors for robust time-series analysis. Landsat 7, 
Landsat 9, and Sentinel-2 imagery are harmonized to Landsat 8 stan
dards using least-squares regression parameters derived from estab
lished studies (Table 1) (Roy et al., 2016; Zhang et al., 2018; Fan et al., 
2023). We utilize CDL data to locate corn and soybean fields. The second 
step is data quality control, where rigorous filtering is applied to ensure 
reliable observations. Low-quality pixels, identified using the Quality 
Assurance (QA) layer for conditions such as cloud cover, shadows, or 
snow, are masked. Since the QA layer does not always effectively 
remove snow contamination, we further refine the data by retaining 
only observations where the Normalized Difference Snow Index (NDSI) 
is below − 0.2, as lower NDSI values indicate a reduced likelihood of 
snow cover. While NDSI >0.4 is typically used to indicate snow pres
ence, we adopt a conservative threshold of − 0.2 to minimize the risk of 
including any snow-contaminated pixels (Riggs et al., 2016). In addi
tion, to ensure numerical stability in the HPI and NHPI calculations, we 
retain only observations where NDVI is greater than zero. The third step 
focuses on the generation of the index time series. With high-quality 
satellite observations, we generate NDVI and HPI time series to cap
ture phenological development and harvesting transitions. To address 
temporal gaps between valid observations, we apply linear interpolation 
to produce continuous NDVI and HPI curves. The NDVI time series is 
first analyzed to determine the harvesting window using the MOS as a 
key marker for each field (Fig. 5). Defining this window is crucial for 
isolating harvesting-related signals, eliminating interference from 

Fig. 5. Schematic diagram of the NHPI time series across the whole harvesting season and the corresponding NIR and NDVI source curves. MOS refers to middle of 
senescence metric.

Fig. 6. Workflow for mapping corn and soybean harvesting dates across the U. 
S. Midwest using the Google Earth Engine platform. a is applied to exclude 
pixels without a clear harvesting signal, often disrupted by tillage practices. b is 
used to locate the estimated harvesting date on the NHPI time series.

Table 1 
Coefficients used to harmonize Landsat 7, Landsat 9, and Sentinel-2 data to 
Landsat 8 across the six spectral bands.

Bands Landsat-7 Landsat-9 Sentinel-2

Blue L8 = 0.0003 +
0.8474 × L7

L8 = 0.0021 +
0.9518 × L9

L8 = 0.0003 +
0.9570 × S2

Green L8 = 0.0088 +
0.8483 × L7

L8 = 0.0024 +
0.9568 × L9

L8 = 0.0015 +
1.0304 × S2

Red L8 = 0.0061 +
0.9047 × L7

L8 = 0.0021 +
0.9690 × L9

L8 = 0.0041 +
0.9533 × S2

NIR L8 = 0.0412 +
0.8462 × L7

L8 = 0.0112 +
0.9545 × L9

L8 = 0.0077 +
0.9644 × S2

SWIR1 L8 = 0.0254 +
0.8937 × L7

L8 = 0.0086 +
0.9560 × L9

L8 = 0.0034 +
0.9522 × S2

SWIR2 L8 = 0.0172 +
0.9071 × L7

L8 = 0.0048 +
0.9596 × L9

L8 = 0.0004 +
0.9711 × S2
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unrelated periods, and enhancing the accuracy and efficiency of har
vesting date detection for each field. Within this window, we then derive 
NHPI values by normalizing HPI to a 0–1 scale based on local minimum 
and maximum HPI values (Eq. (2)), ensuring comparability across 
different fields and environmental conditions. The final step is har
vesting date detection from the retrieved HPI and NHPI index time se
ries. Harvesting-related signals can become obscured when tillage 
follows harvest quickly and satellite observations fail to capture the 
short interval due to limited data availability. This limitation directly 
affects the accuracy of harvesting date estimation. To overcome this, we 
design a thresholding strategy: HPI must exceed a (set to 0.8, calibrated 
using 2023 Illinois ground-truth data from Beck’s dataset) to confirm the 
presence of key observations of the harvesting events. The harvesting 
date is then identified as the first date when NHPI exceeds b (set to 0.6). 
This threshold is determined through calibration using 2023 Illinois 
ground-truth data from Beck’s dataset, where it yields the lowest error 
for both corn and soybean (Fig. S2). This approach ensures accurate 
detection of harvesting events by using a tillage filter to minimize the 
impact of concurrent post-harvest transitions and satellite data gaps.

3.3. Benchmarks

All benchmark methods utilize the harmonized Landsat and Sentinel- 
2 NDVI time series, processed with the least square parameters 
(Table 1), as input for harvesting date estimation for each target farm 
field. This ensures consistency in the data source used by the NHPI-based 
method and the benchmark methods, enabling a fair comparison of their 
performance.

3.3.1. EOS phenometric-based method
As a widely used and established method for detecting harvesting 

dates, the EOS phenometric-based method estimates crop harvest 
phenological stage by extracting the phenological metrics characteristic 
of end of season. These EOS metric extraction strategies include 
threshold-based approaches (e.g., 10 % or 20 % of the NDVI curve 
amplitude) and inflection point-based approaches (e.g., identifying local 
minima in the rate of curvature change) (Diao, 2020). The selection of 
each crop type’s corresponding EOS extraction strategy is guided by 
previous literatures, ensuring that the derived EOS metric closely aligns 
with the harvesting date’s position on the NDVI time series for that crop, 
as validated by ground truth data.

Specifically, the crop’s growth profile is first modeled by Beck’s 
double logistic method to minimize noise while preserving unique 
growth patterns from the original raw data. Beck’s double logistic 
method fits the NDVI time series using a generalized double logistic 
function with six parameters to model crop phenological development 
(Eq. (3)). 

f(t) = Vbase +(Vmax − Vbase)*
(

1
1 + e(− m1*(t− m2) )

+
1

1 + e(− n1*(t− n2) )
− 1

)

(3) 

where t is the day of year (DOY), and f(t) is the corresponding fitted 
NDVI value. Vbase is the NDVI value during the off-season, and Vmax is the 
peak NDVI value for the year. m2 and n2 indicate the timing of inflection 
points during the curve’s rising and declining phases, respectively. m1 
and n1 describe the rates of change at these two inflection points (m2 and 
n2), respectively. The six parameters are estimated by the least square 
method which minimizes the root mean square errors (RMSEs) between 
f(t) and the NDVI time series. This logistic-based fitting function pro
vides a smooth and consistent representation of the crop growth cycle.

Then, the EOS metrics are extracted using GU-based strategy and 
curvature-based strategy from the fitted curve as estimated corn and 
soybean harvesting dates, respectively, in reference to literature (Diao, 
2020). Among all EOS metric extraction strategies, these two strategies 
have shown superior performance, with the GU-based EOS metric 

showing the highest alignment with observed corn harvesting dates and 
the curvature-based EOS metric showing the highest alignment with 
observed soybean harvesting dates, as evidenced by Tables 4 and 5 of 
Diao, 2020. The GU-based strategy identifies the EOS metric as the 
intersection between the senescence line and base line of the fitted NDVI 
curve, termed “Recession” (Fig. 7). The base line is defined as the hor
izontal line at the minimum value of the fitted NDVI time series curve. 
The senescence line is defined as the tangent line to the fitted NDVI time 
series curve at the curve point with the minimum of the first gradient 
line. The curvature-based strategy identifies the EOS metric when the 
change rate of curvature of the fitted NDVI time series reaches its last 
local minimum in the harvesting window, termed “Dormancy” (Fig. 7).

3.3.2. Shape model fitting (SMF) method
As a classic phenology matching method, the SMF method is 

designed to estimate crop phenological transition dates, including har
vesting dates, by matching the geometrical patterns of the target and 
reference phenological time series (Sakamoto et al., 2010). The SMF 
method operates under the assumption that the reference phenological 
time series can be geometrically matched to the target phenological time 
series through scaling and shifting. Once these two time series are 
aligned, the target harvesting date can be estimated by transferring the 
reference harvesting date of the reference phenological time series to the 
target one (Fig. 8).

The target phenological time series is the pixel-level NDVI time series 
of the target field derived from harmonized Landsat and Sentinel-2 
dataset. The reference phenological time series represents a character
istic NDVI phenological curve for the specific crop (i.e., corn or soy
bean). For each crop species, it is typically pre-defined as the 90th 
percentile of all the pure MODIS pixels’ NDVI curves on an annual and 
state-specific basis in reference to the previous study (Diao et al., 2021). 
The reference phenological time series defined per state and year can 
adapt to region and interannually varying crop growing conditions and 
have been found to outperform conventional phenological references. 
The 500-m spatial resolution of MODIS can help locate an adequate 
number of pure pixels of corn and soybean fields across U.S. Midwest 
while maintaining the computational efficiency of the calibration. The 
90th percentile is selected for its ability to reliably characterize crop 
phenological profiles under optimal growth conditions. For each state 
and year, we calibrate its reference harvesting date on the reference 
phenological curve by examining all dates within a two-week window 
around the median harvesting date from the USDA CPRs. CPRs are 
generated based on aggregated field-level phenological observations 
and are used instead of Beck’s field-level harvesting phenological re
cords due to their consistent, long-term availability across states and 
years, which facilitates scalable region-wide calibration on an annual 
basis. Based on each candidate reference harvesting date, the harvesting 
dates of all pure corn (or soybean) pixels (i.e., target pixels) are esti
mated through the geometric matching of the SMF method (Eq. 4). The 
optimal reference harvesting date is selected as the one that minimizes 
the RMSE between the temporal cumulative distribution of SMF- 
estimated harvesting dates of target pixels and the corresponding 
ground harvesting date distribution from the CPRs. This calibration of 
reference harvesting date helps reduce potential uncertainties when 
aligning satellite time series with regional phenological observations 
from CPRs. With the calibrated reference harvesting date and the pre- 
defined reference phenological time series, the SMF method is then 
applied to estimate the harvesting dates for target farm fields using 
corresponding NDVI time series.

The geometrical matching process of the SMF method is defined in 
Eq. (4). 

f(DOY) = ScaleVI⋅r
(
ScaleDOY ⋅

(
DOY + ShiftDOY

) )
(4) 

where the function r(DOY) represents the NDVI value of the reference 
phenological time series of the date DOY, and f(DOY) refers to the NDVI 
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value of the fitted phenological curve on the date DOY. The functions r 
(DOY) and f(DOY) denote the reference and aligned phenological tra
jectories in shape matching. ScaleVI and ScaleDOY denote the magnitude 
of scaling of the reference phenological curve on the vertical and hori
zontal axes (the dimensions of NDVI value and time), respectively. 
ShiftDOY denotes the relative shift of phenological timing of the reference 
phenological curve.

The optimum scaling and shifting parameters (i.e., ScaleVI, ScaleDOY, 
and ShiftDOY) are determined by minimizing the RMSE between the 
fitted phenological curve f(DOY) and the target phenological curve t 
(DOY) (Sakamoto et al., 2010).

With the calibrated reference phenological harvesting date and the 
optimum scaling/shifting parameters specifically fitted for each target 
phenological curve, the harvesting date on the target phenological curve 
is estimated through the geometric transformation equation (Eq. (5)). 

HDt =
1

ScaleDOY
⋅HDr − ShiftDOY (5) 

where HDt is the estimated harvesting date on the target phenological 
curve, and HDr is the calibrated reference harvesting date on the refer
ence phenological curve. ScaleDOY and ShiftDOY are the optimum hori
zontal scaling and shifting parameters, respectively.

3.3.3. Shape model fitting by separate phenological stages (SMF-S) method
As another benchmark of phenology matching method, the SMF-S 

method is developed to improve the accuracy of phenology character
ization by addressing two limitations of SMF (Liu et al., 2022a, 2022b). 
First, the SMF method employs a global matching strategy which aligns 
the entire growing season of the target NDVI time series through linear 
shifting and scaling. However, this global matching strategy leads to 
synchronized length changes among all phenological stages. Such 

uniformity may not reflect actual variations in phenological stage 
lengths observed in practice. To overcome this, SMF-S applies stage- 
adaptive windows that allow independent scaling for each phenolog
ical stage, thereby enabling unsynchronized phenological changes 
tailored to individual phenology stages throughout the growing season. 
Second, the phenological transition date estimates by SMF may exhibit 
larger variance in the later stages (e.g., harvesting date) than those in the 
earlier stages (e.g., planting stage) since the reference phenological time 
series is stretched from the left endpoint (Eq. (4)). This stretching in SMF 
causes the scaling factor calibration process to prioritize the alignment 
of the initial stages, resulting in a dependence of phenological variance 
on the stage of growth. To address this issue, SMF-S performs shape 
model fitting using a modified fitting function within stage-adaptive 
windows. By fitting the curve from both sides, the modified fitting 
function addresses the dependence of phenological variance on the stage 
of growth and improving the robustness of late-stage phenological es
timates (e.g., harvesting date).

Specifically, when applying SMF-S for harvesting date estimation, 
SMF-S introduces the term (1 − ScaleDOY)⋅HDr to allow flexible stretch
ing on both sides of harvesting-adaptive window. HDr is the calibrated 
reference harvesting date on the reference phenological curve. The 
harvesting-adaptive window is centered at DOY =

(
HDr − ShiftDOY

)

with the half-window width w. The width w is determined by both the 
local curve characteristics during harvest and the data noise levels. 
Additionally, SMF-S strengthens the nonlinear parameter optimization 
process by eliminating the NDVI scaling parameter, ScaleVI, as 
phenology estimates are primarily determined by the scaling and shift
ing in the time dimension (Eq. (6)). The modified function is expressed 
as: 

f(DOY,HDr) = r
(
ScaleDOY⋅

(
DOY + ShiftDOY

)
+(1 − ScaleDOY)⋅HDr

)
(6) 

Fig. 7. Schematic of EOS metric extraction using curvature-based strategy (a) and GU-based strategy (b).

Fig. 8. Schematic of geometric matching between reference and target phenological time series curves using the SMF method.
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The optimum scaling/shifting parameters (i.e., ScaleDOY and ShiftDOY) 
are determined by maximizing the correlation coefficient between the 
fitted phenological curve f(DOY,HDr) and the target phenological curve 
t(DOY) within harvesting-adaptive time window (Liu et al., 2022a, 
2022b).

With the calibrated reference phenological harvesting date and the 
optimum scaling/shifting parameters specifically fitted for harvest 
phenological curve, the harvesting date on the target phenological curve 
is estimated through the geometric transformation equation (Eq. (7)). 

HDt = HDr − Shiftopt
DOY (7) 

where HDt is the estimated harvesting date on the target phenological 
curve, and HDr is the calibrated reference harvesting date on the refer
ence phenological curve. Shiftopt

DOY is the optimum shifting parameter.

3.4. Evaluation

3.4.1. Index evaluation
To evaluate the suitability of different spectral indices for harvesting 

date detection, we compare the proposed NHPI with two band ratio 
indices that share similar structural formulation and with three 
commonly used residue-based indices, in terms of their ability to 
distinguish between pre-harvest and post-harvest conditions. Specif
ically, we include SWIR1/NDVI and SWIR2/NDVI to test whether SWIR 
bands can serve as alternatives to NIR for capturing harvesting signals. 
SWIR bands are selected due to their established sensitivity to crop 
residue, which has potential to detect the spectral transition from se
nescent vegetation to exposed residue. We also evaluate three residue 
sensitive indices: the Normalized Difference Tillage Index (NDTI) (Eq. 
(8)) (Zheng et al., 2012), the Normalized Difference Index 7 (NDI7) (Eq. 
(9)) (Jin et al., 2015), and the Shortwave Tillage Index (STI) (Eq. (10)) 
(Stern et al., 2023), which are frequently used for detecting surface 
residue and tillage intensity. All indices are applied to the Beck’s dataset 
for comparative analysis. To account for the potential influence of 
rainfall on index performance, we divide the dataset into two groups 
based on whether precipitation occurs within seven days surrounding 
the recorded harvest date, using daily precipitation data from DAYMET. 
This evaluation framework enables a consistent and robust assessment 
of each index’s effectiveness under both dry and wet harvesting 
conditions. 

NDTI =
SWIR1 − SWIR2
SWIR1 + SWIR2

(8) 

NDI7 =
NIR − SWIR2
NIR + SWIR2

(9) 

STI =
SWIR1
SWIR2

(10) 

3.4.2. Field-level evaluation
At the field level, we validate NHPI-estimated harvesting dates using 

ground-truth data of the Beck’s dataset across the U.S. Midwest from 
2021 to 2023. We quantify its performance using Mean Absolute Error 
(MAE) (Eq. (11)) and the coefficient of determination (R2) (Eq. (12)) 
between estimated and observed harvesting dates of the corn (or soy
bean) fields. Additionally, NHPI’s performance is compared with that of 
the three benchmarks for estimating field-level harvesting dates using 
the Beck’s dataset. To ensure a fair comparison, all benchmark methods 
are evaluated using the same dataset filtered by the tillage filter applied 
during the NHPI-based harvesting date estimation process (Fig. 6). 

MAE =
1
n
∑n

i=1
∣yi − ŷi ∣ (11) 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (12) 

where yi is the observed harvesting date of the sample i, y is the mean of 
all the observed harvesting dates, and ŷi is the estimated harvesting date 
of the sample i. n denotes the number of samples. 

∑n
i=1

(
yi − ŷi

)2 is the 

sum of squared errors and 
∑n

i=1
(
yi − y

)2 is total sum of squares.

3.4.3. State-level evaluation
At the regional level, we assess the performance of the NHPI-based 

method in estimating harvesting dates across the U.S. Midwest by 
comparing its aggregated distributions across states and years to the 
cumulative harvesting date distributions derived from CPRs for corn and 
soybean. Harvesting dates for all corn (or soybean) pixels are aggregated 
to generate state-level cumulative distributions formatted consistently 
with CPR data for the years 2020 to 2023. To assess the consistency 
between the NHPI-based estimates and CPR data, we sample points at 5 
% intervals along each cumulative distribution curve (from 20 % to 80 
%) and evaluate their differences using MAE and R2 metrics.

Considering the high computational resources required for the 
advanced benchmark methods, we do not evaluate them at the state 
level. Instead, we generate crop harvesting date maps for Champaign 
County for the years 2022 and 2023 using the NHPI-based method and 
benchmarks. These maps are compared with ground-truth data from 
field surveys to assess the performance of each method across a 
continuous spatial scale.

4. Result

4.1. Index evaluation

Fig. 9 presents the differences in spectral index values between pre- 
and post-harvest periods for six candidate indices, evaluated separately 
under dry and wet harvesting conditions. Under dry conditions, all three 
NHPI-wise indices (i.e., NIR/NDVI, SWIR1/NDVI, and SWIR2/NDVI) 
demonstrate strong separability between pre- and post-harvest stages, 
with SWIR1/NDVI exhibiting the greatest mean difference. Under wet 
conditions, the separability of SWIR1/NDVI and SWIR2/NDVI decreases 
considerably, with the differences becoming indistinct or nearly 
imperceptible. In contrast, NIR/NDVI maintains relatively clear and 

Fig. 9. Differences in indices of NIR/NDVI, SWIR1/NDVI, SWIR2/NDVI, NDTI 
(Normalized Difference Tillage Index), NDI7 (Normalized Difference Index 7), 
and STI (Shortwave Tillage Index) between pre- and post-harvest corn and 
soybean fields in the U.S. Midwest under varying rainfall scenarios. Rainfall 
presence is determined by whether precipitation occurred within seven days of 
the recorded harvest date. Error bars represent the standard deviation of the 
differences.
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pronounced separability, while a moderate reduction is still observed. 
This is because NIR, SWIR1, and SWIR2 are all affected by surface 
moisture, while NIR is less sensitive to moisture-induced reflectance 
suppression than SWIR due to its weaker water absorption features. As a 
result, NIR serves as a more reliable and resilient numerator in ratio- 
based indices for detecting harvest transitions. The residue-based 
indices (i.e., NDTI, NDI7, and STI) show minimal differences between 
pre- and post-harvest periods, regardless of rainfall conditions. This is 
likely due to their primary sensitivity to surface residue and soil 
composition, rather than to the phenological transition from senescence 
to residue, which is critical for capturing the harvesting signal. Overall, 
NIR/NDVI demonstrates superior and stable performance under both 
dry and wet conditions, supporting the selection of NIR as the optimal 
spectral band in the NHPI formulation.

4.2. Field-level evaluation

Fig. 10 shows the scatterplots of the harvesting dates estimated by 
NHPI-based method against the ground-truth dates from the Beck’s 
dataset for corn and soybean from 2021 to 2023. Overall, the NHPI- 
based method reliably estimates harvesting dates for both crops, with 
data points close to the 1:1 line (solid diagonal line) and consistently 
falling within the ±10-day boundaries (dashed lines). Over the three 
years, the harvesting date estimation performance of the NHPI-based 
method has demonstrated consistent year-over-year improvement. For 
corn, the NHPI-estimated harvesting dates show strong agreement with 
the ground truth, achieving the R2 of 0.887 and MAE of 4.29 days in 
2021. In 2022, the R2 remains stable at 0.886, while the MAE drops to 
3.675 days. By 2023, the R2 rises to 0.929, and the MAE decreases 
further to 3.665 days, reflecting continued refinement in the method’s 
performance. For soybean, the NHPI-based method also demonstrates 
reliable performance and consistent improvement over time, despite its 
slightly lower performance compared to that of corn. In 2021, the 
method yields the R2 of 0.702 and MAE of 5.071 days. The method’s 
accuracy improves in 2022, with R2 increasing to 0.722 and MAE 
dropping to 3.388 days. In 2023, the method achieves the R2 of 0.841 

and the MAE of 3.695 days, showing its enhanced reliability for soybean 
harvesting date estimation over time.

To assess the improvement in harvesting date estimation perfor
mance over time, we analyze the impact of the number of high-quality 
satellite images within harvesting windows on NHPI-based harvesting 
date estimates. Fig. 11 shows the boxplot of the absolute errors (i.e., 
MAE) in the harvesting date estimates from NHPI-based method in 
relation to the number of high-quality harmonized Landsat and Sentinel- 
2 images available within the ±10-day window around the harvesting 
date. In general, a larger number of high-quality observations near the 

Fig. 10. Annual field-level harvesting date estimation results of NHPI-based method for corn and soybean.

Fig. 11. The number of high-quality Landsat and Sentinel-2 images within the 
±10-day window around the harvesting date vs the absolute error (i.e., MAE) of 
harvesting dates estimated by the NHPI-based method. The yellow lines 
represent the median of absolute error between actual and estimated harvesting 
dates. Boxes represent the interquartile range (25th–75th percentiles), and 
whiskers extend to the most extreme data points within 1.5 times the inter
quartile range, depending on the actual data distribution. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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harvesting date usually results in lower absolute errors and more stable 
performance, as reflected by reduced median errors and narrower error 
ranges. The median absolute error decreases from 8 days to a stable 
value of approximately 2 days. This relationship indicates the critical 
role of enhanced satellite data availability in improving harvesting date 
estimation accuracy. With more frequent observations, the two satellite 
images captured before and after harvesting are more likely to be 
temporally closer to the actual harvesting date. This narrower temporal 
window restricts the final harvesting date detection to a smaller range, 
improving its precision. Therefore, the increased availability of obser
vations from different Landsat generations and Sentinel-2 in 2022 and 
2023 contributes to the improved accuracy of NHPI-based harvesting 
date estimates. In contrast, fewer observations are available in 2021 
because of the delayed launch of Landsat 9 (Masek et al., 2020). With 
fewer observations, the harvesting signal in NHPI time series appears 
weaker (i.e., a gradual slope instead of a sharper transition), resulting in 
relatively larger estimation errors.

Three state-of-the-art benchmark methods are selected and 
compared with the NHPI-based method for field-level harvesting date 
estimation. All methods are validated against Beck’s field data. The 
NHPI-based method demonstrates superior performance in estimating 
field-level harvesting dates, achieving an average R2 of 0.83 and a MAE 
of 3.9 days for corn and soybean fields (Fig. 12). The three benchmark 
methods show lower performance, with R2 approximately 0.4 and MAE 
around 10 days for corn, and R2 about 0.3 and MAE of 7 days for soy
bean. Among the benchmark methods, the two phenology-matching 
methods (i.e., SMF and SMF-S) exhibit comparable performance in 
harvesting date estimation, providing field-level estimates that gener
ally align with in-situ harvesting data and forming scattered clusters 
near the 1:1 line. This clustering pattern results from the calibration of 
the reference harvesting date and phenological curve, which enhances 
overall matching accuracy. However, the calibrated reference harvest
ing date and phenological curve on the state and annual basis fail to fully 
capture the field-level variability in the relationship between harvesting 
and the VI curve, which results in relatively high estimation errors. The 
EOS phenometric-based method exhibits relatively larger biases with 
systematic underestimation for both corn and soybean, as well as 
distinct horizontal clustering patterns for soybean. The underestimation 
likely results from the inflection-based feature point extraction (i.e., GU- 

based and curvature-based strategies) failing to capture late harvest 
when NDVI has already declined to a plateau and remains unchanged. 
The horizontal clustering pattern observed in soybean is likely due to the 
curvature-based strategy, which relies solely on curvature changes and 
consistently identifies similar EOS points across different curves, espe
cially when variations are minimal (Fig. 7). In contrast, the EOS point 
extracted by GU-based strategy is determined by both the senescence 
line and the baseline, making them more sensitive to variations in 
overall trajectory shape. Overall, the NHPI-based method delivers the 
most accurate and reliable results, reducing underestimation and 
enhancing consistency in field-level harvesting date estimation 
compared to the advanced benchmark methods.

The NHPI-based method outperforms the three benchmark methods 
in harvesting date estimation, achieving an MAE of approximately 4 
days across 2022 and 2023 in Champaign, IL, when validated against 
field survey observations (Fig. 13). It effectively captures significant 
local variations in harvesting dates of the area with differences of up to 
50 days between the earliest and latest harvesting dates, closely 
reflecting the real-world spatial variability of harvesting practices 
(Fig. 13). In contrast, the EOS phenometric-based method shows less 
stable performance, estimating later harvesting dates in 2022 (MAE: 
12.7 days) and earlier dates in 2023 (MAE: 6.3 days). This inconsistent 
performance highlights interannual variability in the relationship be
tween EOS metrics derived from VI time series and actual harvesting 
dates. The two phenology-matching benchmark methods, SMF and SMF- 
S, exhibit relatively stable and similar performance, with MAEs of 
around 8 days across both years. While the phenology-matching 
methods generally provide more consistent results, the EOS 
phenometric-based method may perform better in a given year 
depending on selected EOS extraction strategy and crop harvesting 
patterns. In addition, the NHPI-based method appears less affected by 
drainage compared to the benchmark methods, which show more 
irregular spatial patterns such as curved features aligned with drainage 
on the estimated harvesting date maps. This is likely due to two key 
factors: (1) the tillage filter excludes drainage-affected pixels that lack a 
distinct post-harvest crop residue signal, and (2) the NHPI trajectory is 
less sensitive to mixed-pixel effects, where a pixel includes both crop
land and drainage. In such cases, the strong spike from post-harvest 
residue in the cropland portion typically dominates the NHPI signal, 

Fig. 12. Field-level harvesting date estimation results from 2021 to 2023 for corn and soybean using the NHPI-based method, EOS phenometric-based method (EOS), 
SMF, and SMF-S.
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while the drainage portion remains spectrally stable during this transi
tion and has minimal influence on the spike pattern. Overall, the NHPI- 
based method excels in capturing the real-world spatial variability of 
harvesting patterns, whereas the benchmark methods tend to produce 
overly uniform harvesting date estimates that do not adequately repre
sent localized variations across crop fields.

4.3. State-level evaluation

With 2023 as an example, Fig. 14 presents a comparison of the 
temporal cumulative distributions of NHPI-estimated harvesting dates 
and state-level CPR data for corn and soybean across 12 states in the U.S. 
Midwest. In general, the temporal cumulative distributions of estimated 
harvesting dates align with those of state-level CPRs in 2023, with 
comparable harvesting progress for both crops across states. MAEs be
tween the actual and estimated harvesting curves are all within 6 days 
for both crops across all states. 9 states achieve MAEs below 3 days for 
corn, while 7 states achieve these for soybean. Furthermore, differences 
in the cumulative distributions of estimated harvesting dates highlight 

the variability in harvesting decisions across U.S. Midwestern states, 
driven by diverse environmental, climatic, and farming conditions.

NHPI-estimated harvesting dates for corn and soybean fields in the 
U.S. Midwest from 2020 to 2023 are aggregated at the state level and 
validated against corresponding CPR data by sampling points from cu
mulative distribution percentiles (20 %–80 %) at 5 % intervals. Across 
all states and years combined, these aggregated results show a high level 
of consistency with the CPR state-level statistics, achieving the R2 of 
0.94 and the MAE of 2.59 days for corn, and the R2 of 0.85 with the MAE 
of 2.98 days for soybean (Fig. 15). Notably, these results demonstrate 
improved accuracy compared to state-level harvesting date estimates 
from previous phenology characterization studies that utilized EOS 
phenometric-based methods (Yang et al., 2020; Shen et al., 2022a), 
which reported MAEs exceeding one week. This improvement stems 
from the stronger and more consistent alignment between actual har
vesting dates and the feature points identified from the NHPI curve, 
compared to the relationship between the harvesting dates and the 
feature points derived from the VIs time series. Per-state evaluations 
against CPR data further highlight the robustness of the NHPI-based 

Fig. 13. Field-level harvesting date mapping results for Champaign, IL, in 2022 (a) and 2023 (b), with MAE values (shown in parentheses) for four methods: NHPI- 
based, SMF, SMF-S, and EOS phenometric-based method (EOS). Ground-truth harvesting dates and the corresponding growing season PlanetScope imagery (sourced 
from the Planet website) are provided for reference. The location of the evaluated fields within the U.S. is shown in Fig. S1.
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method (Tables S2 and S3). The method achieves MAEs below 5 days 
and R2 values above 0.85 for both crops across most Midwestern states. 
These findings demonstrate the strong performance of the NHPI-based 
method in capturing state-level harvesting dynamics.

4.4. Spatiotemporal analysis of harvesting dates

The 30-m harvesting date maps for corn and soybean in the U.S. 
Midwest from 2020 to 2023 reveal distinct spatial and temporal patterns 
in harvesting practices (Figs. 16 and 17). For corn, harvesting dates tend 
to be earlier in the south of U.S. Midwest, with a clear spatial trend 
toward later harvests in the northern states (Fig. 16). In the northern U. 
S. Midwest, the state with the latest corn harvesting date varied annually 
from 2020 to 2023, highlighting year-to-year shifts in harvesting 

patterns likely driven by climate variability, crop management prac
tices, and fluctuations in growing season length. Compared to corn 
harvesting dates, soybean harvesting dates display more stability across 
both space and time (Fig. 17). These high-resolution maps provide in
sights into fine-scale harvesting pattern differences, capturing substan
tial within-state variations. The zoomed-in consistent view of an area in 
Iowa across four years highlights year-to-year variation in harvesting 
dates. Additionally, northern Illinois consistently experiences later corn 
harvests compared to the southern part of the state. Such spatial details 
are not captured by state-level CPRs, underscoring the value of these 
detailed maps in understanding both local and regional harvesting 
dynamics.

To characterize spatial variability in corn and soybean harvesting 
dates across the U.S. Midwest, we further analyze the relationship 

Fig. 14. State-level temporal cumulative distributions of 2023 corn (a) and soybean (b) harvesting dates from the NHPI-based method (dashed blue lines) versus 
those from ground-based CPRs (solid red lines) across 12 U.S. Midwestern states.
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between harvesting dates and geographic location. Harvesting dates are 
aggregated for each county, and the county-level harvesting dates are 
then associated with the latitudes of the corresponding county centroids, 
given that latitude is a key determinant of temperature, which in turn 
influences agricultural management decisions. The fitting method with 
the lowest RMSE among linear, bilinear, and quadratic models is applied 
to model the spatial trend of harvesting dates across latitudes. As shown 
in Fig. 18, corn shows an increasing trend in harvesting dates in lower- 
latitude regions of the U.S. Midwest but exhibits a slight decreasing 
trend in higher-latitude ones. For soybean, a trend toward slightly 
earlier harvesting dates is observed as latitude increases. These patterns 
are also observed from state-level CPR results.

The earlier corn harvesting dates observed in lower-latitude regions 
are likely attributed to increased planting flexibility with relatively 
warm climate conditions. Warmer spring temperatures in these areas 
accelerate soil warming and promote earlier attainment of the temper
atures needed for seed germination and crop growth. This flexibility 
allows farmers to start planting earlier relative to the northern part 
(Zheng et al., 2016). At the same time, corn seed sales data show that 
farmers in these regions often select cultivars with similar relative 
maturity dates, which may not fully take advantage of the extended 
growing season (Abendroth et al., 2021). As a result, corn in lower- 
latitude regions follows a temperature-driven planting pattern, where 
higher temperatures enable earlier planting and, consequently, earlier 
harvesting. In contrast, at higher latitudes, cooler temperatures delay 
planting decisions and slow crop development, prolonging the time 
required for corn to reach full physiological maturity. This temperature- 
driven delay, combined with a shorter growing season (frost-free period) 
constrained by climatic factors, prompts farmers to choose cultivars 
adapted to local conditions, leading to more synchronized harvest 
timing across northern regions. For soybean, which has a shorter 
growing season and is typically planted after corn, harvest timing re
mains more consistent across latitudes. Its growth cycle fits within a 
relatively narrow seasonal window, making it less sensitive to regional 
temperature variations.

The field-level harvesting date maps in the U.S. Midwest reveal that 
(1) soybean fields generally have later harvest dates than corn fields in 
regions below 40 degrees latitude, but align more closely with corn 
fields in regions above 40 degrees latitude for the mapping years, (2) 

corn harvesting dates vary by more than three months across the Mid
west, while soybean harvesting dates vary by up to two months, and (3) 
the NHPI-based method demonstrates both its feasibility and effective
ness for field-level harvesting date estimation on the GEE platform.

5. Discussion

5.1. Advantages of NHPI

In this study, we introduce a novel NHPI to detect crop harvesting 
dates from optical satellite time series and demonstrate its effectiveness 
for corn and soybean fields across the U.S. Midwest, a region with 
diverse climates and cropping systems. NHPI achieves high accuracy 
and efficiency at both field and state levels, primarily due to three key 
advantages.

Firstly, the NHPI-based method innovatively estimates harvesting 
dates through directly identifying the special spectral characteristics 
associated with the harvesting event. By capturing the unique spectral 
reflectance changes through the combination of NIR and NDVI that 
occur during harvesting, the NHPI time series identifies the transition 
from senescent plants to crop residue, enabling accurate and reliable 
harvesting date estimation. In contrast, existing methods, such as 
phenometric-based detection and phenology matching methods, deter
mine the harvesting date by identifying a related feature point on the VI 
time series curve (Sacks and Kucharik, 2011; Diao et al., 2021; Dong 
et al., 2019; Liu et al., 2022a; Shen et al., 2023; Cao et al., 2024; Chen 
et al., 2004b; Delbart et al., 2006; Zeng et al., 2020; Diao, 2020; Gao 
et al., 2017; Moulin et al., 1997; Schwartz et al., 2002; Wu et al., 2017). 
However, these methods assume a consistent relationship between 
harvesting and the VI curve, an assumption that does not always hold. 
Variations in field-level management practices can lead to differences in 
both the shape of VI curves and the timing of harvesting relative to these 
curves. The same harvesting date may correspond to different positions 
of VI curves—some near turning points and others approaching the 
curve minimum (Fig. 19). These discrepancies arise because crops are 
harvested at different phases of senescence across fields, with some 
harvested while vegetation remains partially green, resulting in rela
tively higher VI values, and others after complete senescence, when VI 
has much declined. Additional factors such as crop variety, weather 

Fig. 15. Validation of NHPI-estimated harvesting dates against CPR’s harvesting phenology data, using sampling points from cumulative distribution percentiles (20 
%–80 %) at 5 % intervals, for both corn and soybean of the U.S. Midwest from 2020 to 2023. This results in a total of 624 sampling points (12 states × 4 years × 13 
percentiles).
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conditions, and management decisions further influence harvesting 
timing, causing variability in VI patterns and complicating the estima
tion process. Compared to these methods, the NHPI-based method 
demonstrates improved accuracy. At both the field and state levels, the 
NHPI-based method yields lower MAEs than those reported in previous 
phenology characterization studies, including state-level estimates using 
EOS phenometric-based (Yang et al., 2020; Shen et al., 2022a) and 
phenology-matching (Sakamoto, 2018b) methods, as well as field-level 
estimates based on EOS phenometrics (Shen et al., 2023), all of which 
report MAEs exceeding one week. This improvement is attributed to the 
stronger and more consistent alignment between actual harvesting dates 
and the transition points identified from the NHPI curve, as opposed to 
the less stable correspondence observed with VI-based metrics. By 
establishing a distinct linkage between the harvesting phenological 
stage and spectral characteristics, the NHPI-based method overcomes 
those limitations of conventional approaches and unlocks new possi
bilities for advancing crop phenology monitoring.

Secondly, the NHPI-based method effectively enhances the harvest
ing event signal on the time series, improving the harvesting date esti
mation accuracy. Among all optical spectral bands and their 
combinations available in Landsat and Sentinel-2, the NIR/NDVI ratio 
consistently exhibits the largest separability between pre- and post- 

harvest stages, regardless of rainfall conditions (Fig. 9). The high level 
of separability enables precise differentiation between pre- and post- 
harvest stages directly from the NIR/NDVI ratio time series. The effec
tiveness of NIR in this context can be attributed to its sensitivity to 
vegetation structure and its capacity to reduce soil background effects, 
which sets it apart from other spectral bands (Badgley et al., 2017). 
Specifically, in healthy plants, internal leaf structures, composed of cell 
walls and air spaces, efficiently scatter NIR light, resulting in high 
reflectance. As plants enter senescence stage, these structures deterio
rate, with cell walls losing integrity and air spaces diminishing, leading 
to increased absorption and reduced NIR reflectance (Daughtry and 
Hunt, 2008; Baldocchi et al., 2020). After harvesting, when senescent 
vegetation is replaced by crop residue and soil background, NIR 
reflectance rises sharply due to the loss of organized plant structures, the 
dominance of reflective fibers (e.g., lignin and cellulose), and the 
enhanced scattering caused by the rough surfaces of crop residue. 
Meanwhile, NDVI value continues to decrease from senescent plants to 
post-harvesting conditions as the removal of senescent plants further 
reduces chlorophyll content and photosynthetic activity, exposing non- 
vegetative surfaces (i.e., soil or crop residue). Consequently, NIR 
generally follows a trend similar to NDVI before harvest but exhibits an 
opposite trend after harvest. The resulting distinct contrast makes the 

Fig. 16. NHPI-based mapping of 2020–2023 corn harvesting dates across the U.S. Midwest on GEE. The colour scale represents the estimated DOY of harvest, 
ranging from dark green (earlier than DOY 255) to dark red (later than DOY 315), with a gradient transitioning through yellow and orange in 5-day intervals. Insets 
display zoomed-in consistent views of a region in Iowa to show differences in estimated harvesting dates of corn fields at the local scale. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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NIR-to-NDVI ratio a clear indicator of the harvesting event. Moreover, as 
an index designed to detect harvesting dynamics by monitoring the 
transition from the senescent stage to the crop residue stage, NHPI offers 
significant advantages over traditional crop residue indices (e.g., NDTI 
and STI) in harvesting date detection. These crop residue indices are 
primarily intended for residue ratio analysis, operating under the 
assumption that harvesting has already occurred and no live crops 
remain in the field (Quemada et al., 2018). This reliance on post-harvest 
conditions limits their applicability for harvesting date estimation, as 
they are unable to reliably distinguish whether crops are still present or 
have already been harvested. In contrast, NHPI’s design emphasizes the 
capturing of spectral changes during the harvesting event, offering a 
robust and transferable index for identifying harvesting dates across a 
wide range of environments.

Lastly, the straightforward design of the NHPI is well-suited for 
efficient implementation on geospatial data processing platforms like 
Google Earth Engine. It allows for direct application on Landsat and 
Sentinel-2 imagery time series, enabling efficient and robust harvesting 
date mapping without the need for complex preprocessing steps or 
specialized datasets, which are often required by advanced phenology 
matching or other harvest phenology detection methods. By leveraging 
GEE’s vast data repositories and powerful computational capabilities, 

the NHPI-based method supports large-scale agricultural harvest 
monitoring, facilitating the efficient mapping of harvesting dates across 
extensive regions.

5.2. Transferability of the proposed method

The proposed NHPI-based method exhibits robust performance in 
estimating harvesting dates at both field and state levels across the U.S. 
Midwest over multiple years. Notably, this performance is achieved 
without the need for region-specific threshold calibration, underscoring 
the strong transferability of NHPI across diverse regions and years. A 
sensitivity analysis evaluating a range of NHPI thresholds (Fig. S2) in
dicates that values near 0.6 consistently produce low errors (MAE) and 
high agreement (R2) for both corn and soybean across different states 
and years, further supporting its applicability without extensive recali
bration. This transferability is attributed to two key design elements of 
NHPI, including: (1) the normalization of the HPI time series, and (2) the 
incorporation of the harvesting window.

Firstly, the normalization of the HPI time series effectively mitigates 
site-specific variability, reducing estimation errors in harvest date 
detection. A comprehensive analysis of all U.S. Midwest Beck’s datasets 
reveals that HPI values exhibit a distinct pattern, with post-harvest 

Fig. 17. NHPI-based mapping of 2020–2023 soybean harvesting dates across the U.S. Midwest on GEE. The colour scale represents the estimated DOY of harvest, 
ranging from dark green (earlier than DOY 255) to dark red (later than DOY 315), with a gradient transitioning through yellow and orange in 5-day intervals. Insets 
display zoomed-in consistent views of a region in Iowa to show differences in estimated harvesting dates of soybean fields at the local scale. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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values generally higher than pre-harvest values (Fig. 20(a)). This pattern 
highlights the spectral changes captured by the HPI time series before 
and after harvesting, and underscores the potential of using the HPI 
threshold for harvesting date detection. However, the overlapping be
tween pre- and post-harvest value distributions can introduce errors 

when applying a uniform HPI threshold for harvesting date estimation. 
This overlap is likely caused by variations in crop cultivars, soil char
acteristics, and management practices, which influence the spectral 
reflectance patterns of fields during the transition from pre- to post- 
harvest stages. By standardizing HPI values to the 0–1 range, normali
zation significantly reduces the overlap between pre- and post-harvest 
value distributions (Fig. 20(b)). This process creates a clearer separa
tion between pre- and post-harvest stages in the NHPI time series. As a 
result, NHPI maintains consistent and reliable performance across 
diverse agricultural regions. Additionally, normalization reduces the 
need for local calibration, increasing NHPI’s adaptability and trans
ferability across different landscapes and conditions. This improvement 
ensures more reliable and accurate harvest detection on a broader scale, 
making the method practical for region-wide harvest application.

Secondly, the incorporation of field-specific harvesting window in 
NHPI-based method ensures that the detection window aligns closely 
with the actual harvesting period, thereby filtering out confounding 
trends from earlier or unrelated portions of the season. High NIR/NDVI 
values typically occur after harvest, while similar values can also appear 
during the pre-planting season in fields where residual crop matter from 
the previous growing season remains due to the absence of tillage. The 
similarity in NHPI values between planting and harvesting periods can 
complicate harvesting date identification, potentially causing planting 
to be misclassified as harvesting, particularly when the detection win
dow covers the entire growing season or year. Harvest timing may vary 
significantly across regions and years. In some cases, harvesting in one 

Fig. 18. Relationship between mean county-level harvesting dates and latitude in the U.S. Midwest for corn (a) and soybean (b) from 2020 to 2023, with a fitted 
trend line illustrating the latitude-dependent variation in harvesting timing. All fitted trends are statistically significant (p < 0.01).

Fig. 19. NDVI profiles for sampled actual corn fields with the same harvesting 
dates on DOY 290 (October 17) in 2023, based on Beck’s dataset of Illinois. The 
NDVI time series are derived from harmonized Landsat and Sentinel-2 
observations.
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area may coincide with planting in another area due to differences in 
crop types, management practices, and environmental conditions. By 
tailoring the harvesting window to each field, this method accounts for 
such seasonal and regional variations, ensuring more accurate detection. 
This adaptive approach enhances the overall generalizability and 
transferability of NHPI, enabling it to perform reliably across diverse 
regions and agricultural systems under varying conditions.

Overall, the NHPI-based harvest detection method exhibits strong 
transferability across broad regions and multiple years due to the 
normalization of the HPI time series and the incorporation of the har
vesting window. In regions such as South America (e.g., Brazil) or sub
tropical Asia, where crops may remain in the field for 3 to 4 months after 
physiological maturity due to delayed dry-down, limited machinery, or 
market-driven harvest delays, the harvesting window length can be 
flexibly extended (e.g., from two to five months) to align with local crop 
calendars and management practices. Experimental results also indicate 
NHPI’s adaptability to other data sources, such as PlanetScope and 
MODIS, enabling the creation of tailored harvest date maps for diverse 
applications.

5.3. Applicable conditions and limitations

The NHPI-based method shows strong performance in both field- and 
state-level harvesting date estimation. However, this method requires at 
least one high-quality satellite observation between the harvest event 
and typical post-harvest field practices (i.e., tillage). In certain scenarios, 
rapid post-harvest tillage combined with limited satellite data avail
ability (due to cloud cover or infrequent revisit intervals) can obscure 
the harvesting signal in the HPI time series. This happens because the 
reflectance of senescent crops is similar to that of the field post-harvest 
tillage (Fig. 4), causing the HPI time series to appear flattened, with a 
direct transition from pre-harvest to post-harvest tillage. Consequently, 
when HPI is normalized to a 0–1 scale (NHPI), accurately distinguishing 
the harvesting event within the time series may not be easy, even though 
the harvesting date can still be identified using a threshold derived from 
the NHPI time series. It is worth noting that prompt no-till post-harvest 
planting of the next crop does not necessarily affect the detection of the 
previous crop’s harvest date, as crop residues still remain undisturbed 
on the field surface. However, if the subsequent planting involves con
ventional tillage, the residue may be removed too quickly, likely pre
venting the harvesting signal from being captured by satellite 
observations. To ensure the accuracy of estimated harvesting dates, we 
utilize the absolute HPI value (rather than the normalized version) to 
filter out pixels that may lack a detectable harvesting signal due to im
mediate tillage and insufficient observations. This makes the availability 

of valid pixels with estimated harvest dates dependent on satellite image 
accessibility. In addition, the final estimation accuracy is highly related 
to the availability of the satellite data around harvest period (Fig. 11). 
To address the data gap-related challenge, advanced image fusion 
techniques, such as deep learning-based spatial and temporal fusion 
(Yang et al., 2021; Shen et al., 2022b; Liu et al., 2024; Lyu et al., 2025), 
could be employed to generate daily observations of both high spatial 
and temporal resolutions in the future. Additionally, utilizing high- 
temporal-resolution PlanetScope imagery for harvesting date estima
tion could also potentially mitigate the challenges posed by long revisit 
intervals and the close timing of post-harvest tillage, ultimately deliv
ering more accurate and reliable mapping results.

The NHPI-based method estimates the harvesting date by detecting 
the transition from senescent vegetation to crop residue. Experimental 
results have demonstrated the robust harvesting date estimation per
formance of the NHPI-based method for crops such as corn and soybean. 
Preliminary testing on winter wheat fields also suggests its potential 
applicability to cereal species, though the absence of ground truth data 
prevents a full evaluation of its accuracy. However, extending NHPI to 
certain crops could pose potential challenges, particularly for those not 
fully removed during harvesting. For instance, in cotton fields, only the 
cotton bolls are harvested, leaving the stems intact. Such partial har
vesting results in weaker spectral changes before and after harvest, 
which may limit NHPI’s effectiveness in such scenarios. Future research 
could investigate the unique spectral signatures of partially harvested 
fields, enabling further adaptations of NHPI to improve its applicability 
across diverse crop types and agricultural systems.

6. Conclusion

In this study, we develop an innovative NHPI index that combines 
NIR and NDVI to robustly detect harvesting dates for corn and soybean 
fields across varied soil and weather conditions. Implemented on Google 
Earth Engine, NHPI supports scalable harvesting date mapping over 
extended areas using Landsat and Sentinel-2 imagery. The NHPI-based 
harvesting estimation method is evaluated against three benchmark 
methods (i.e., the EOS phenometric-based method, the shape model 
fitting method, and the shape model fitting by the separate phenological 
stage method). By uniquely identifying the distinct spectral reflectance 
change associated with the harvesting event, NHPI demonstrates 
enhanced capability in accurately estimating harvesting dates without 
requiring site-specific recalibration. In the U.S. Midwest, the NHPI- 
based method achieves a R2 of 0.85 and MAE of less than 4 days for 
field-level harvesting dates from 2021 to 2023 and the state-level R2 of 
0.9 with MAE around 3 days from 2020 to 2023. NHPI demonstrates 

Fig. 20. HPI (a) and NHPI (b) values before and after the harvesting event, derived from harmonized Landsat and Sentinel-2 images for 2023 corn and soybean Beck 
fields across the U.S. Midwest.
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strong transferability for harvesting date estimation across various re
gions and years. The estimated field-level harvesting dates can further 
provide valuable insights for more accurate crop yield estimation and a 
deeper understanding of factors underlying yield gaps, while the 
spatiotemporal patterns of harvesting dates can contribute to developing 
proactive adaptation strategies to mitigate the adverse impacts of 
climate change.
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