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A B S T R A C T

Crop type maps are essential in informing agricultural policy decisions by providing crucial data on the specific
crops cultivated in given regions. The generation of crop type maps usually involves the collection of ground
truth data of various crop species, which can be challenging at large scales. As an alternative to conventional
field observations, street view images offer a valuable and extensive resource for gathering large-scale crop type
ground truth through imaging the crops cultivated in the roadside agricultural fields. Yet our ability to sys-
tematically retrieve crop type labels at large scales from street view images in an operational fashion is still
limited. The crop type retrieval is usually at the pixel level with uncertainty seldom considered. In our study, we
develop a novel deep learning-based CropSight modeling framework to retrieve the object-based crop type
ground truth by synthesizing Google Street View (GSV) and PlanetScope satellite images. CropSight comprises
three key components: (1) A large-scale operational cropland field-view imagery collection method is devised to
systematically acquire representative geotagged cropland field-view images of various crop types across regions
in an operational manner; (2) UncertainFusionNet, a novel Bayesian convolutional neural network, is developed
to retrieve high-quality crop type labels from collected field-view images with uncertainty quantified; (3) Seg-
mentation Anything Model (SAM) is fine-tuned and employed to delineate the cropland boundary tailored to
each collected field-view image with its coordinate as the point prompt using the PlanetScope satellite imagery.
With four agricultural dominated regions in the US as study areas, CropSight consistently shows high accuracy in
retrieving crop type labels of multiple dominated crop species (overall accuracy around 97 %) and in delineating
corresponding cropland boundaries (F1 score around 92 %). UncertainFusionNet outperforms the benchmark
models (i.e., ResNet-50 and Vision Transformer) for crop type image classification, showing an improvement in
overall accuracy of 2–8 %. The fine-tuned SAM surpasses the performance of Mask-RCNN and the base SAM in
cropland boundary delineation, achieving a 4–12 % increase in F1 score. The further comparison with the
benchmark crop type product (i.e., cropland data layer (CDL)) indicates that CropSight is a promising alternative
to crop type mapping products for providing high-quality, object-based crop type ground truth of diverse crop
species at large scales. CropSight holds considerable promise to extrapolate over space and time for operation-
alizing large-scale object-based crop type ground truth retrieval in a near-real-time manner.

1. Introduction

Food security will be increasingly challenged in the upcoming de-
cades with ongoing climate change and population growth. A range of
agricultural policies have been designed to address the challenge
through optimizing crop management practices (e.g., crop rotation and
tillage) and enhancing crop productivity (Bennett et al., 2012). Crop

type maps are critical in informing these agricultural policy decisions by
providing crucial data on the specific crops cultivated in a given area
(Schmedtmann and Campagnolo, 2015; Som-ard et al., 2022).
Currently, large-scale crop type maps could be efficiently generated with
the remote sensing technologies and machine learning/deep learning
classification models (Belgiu and Csillik, 2018; Vuolo et al., 2018; Cai
et al., 2018; Griffiths et al., 2019; Oliphant et al., 2019; Dakir et al.,
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2020; Jia et al., 2021; Tran et al., 2022; Blickensdörfer et al., 2022). As
the training data for these classification models, crop type ground truth
plays an essential role in crop type mapping by providing labeled ex-
amples of various types of crop species. Such crop labels enable classi-
fication models to make informed crop type predictions over wide
geographical regions through characterizing distinct remote sensing
features (e.g., crop phenology patterns, tillage practices, and harvest
time) associated with each crop species. The large-scale acquisition of
crop type ground truth is imperative for ensuring the quality of crop type
mapping as well as advancing a diversity of subsequent agricultural
applications (e.g., crop phenology and condition monitoring, manage-
ment practice optimization, and crop yield estimation).

Field survey is the most traditional crop type ground truth collection
method. It can record specific crop types planted in the fields. Yet,
conducting field surveys over large-scale geographical regions is labor-
intensive, time-consuming, and costly. As an alternative, historical
crop type maps are utilized as substitutes for ground truth data to train
the crop type classifier, with samples drawn from these maps (e.g.,
cropland data layer (CDL) of US (Cai et al., 2018; Wang et al., 2019;
Johnson and Mueller, 2021; Lin et al., 2022; Zhang et al., 2022),
northeast China crop type map (Di Tommaso et al., 2021), crop map of
England (CROME) (Luo et al., 2022), carta uso agricolo (CUA) of Italy
(Gallo et al., 2023)). Crop type maps could provide abundant historical
crop type “ground truth” across agricultural areas for characterizing
corresponding crop species distributions and patterns over extended
regions and years. However, the accuracy of such “ground truth” varies
spatially and temporally, depending on the quality of the field-based
ground truth and remote sensing observations, as well as the classifi-
cation methods employed in generating crop type maps. Additionally,
the availability of “ground truth” is limited by the release timing of the
crop type maps. The existing crop type maps are typically generated
using year-round remote sensing observations to capture the full range
of crop growing phenology characteristics (Yang et al., 2023). Conse-
quently, the “ground truth” for the current year can only be retrieved in
the following year, posing a delay and challenge to crop mapping and
subsequent tasks.

Another promising method of retrieving crop type ground truth is
using street view imagery (e.g., Google Street View and Baidu Total
View). With coverage spanning over half of the world’s populated re-
gions (Goel et al., 2018), street view imagery provides a valuable large-
scale image source for various data collection tasks (e.g., harvesting date
estimation (Jiang et al., 2024), land use classification (Cao et al., 2018),
real estate valuation (Xu et al., 2022), and pedestrian count collection
(Yin et al., 2015)). By visually identifying the crop plants cultivated in
the roadside agricultural fields, crop type ground truth labels could be
directly extracted from the street view imagery, which replaces actual
field observations required in field surveys with virtual audits
(Fatchurrachman et al., 2022; Hu et al., 2022). Compared to acquiring
“ground truth” from crop type maps, street view imagery-based methods
largely reduce the issues of varying crop type labeling accuracy and
latency over space and time. Street view imagery facilitates the reliable
identification of crop types with embedded detailed visual features (e.g.,
crop morphology and crop leaves) from a human (horizontal) viewpoint,
which cannot be provided by other commonly used data sources such as
top-down view aerial or satellite imagery (Biljecki and Ito, 2021). Street
view imagery also enables the prompt acquisition of crop type ground
truth labels during the growing season. Upon the online availability of
cropland-related street view images, the direct identification of crop
types becomes feasible, allowing for the timely collection of ground
truth data.

To streamline the collection of crop type ground truth from street
view imagery, deep learning models (e.g., residue network and incep-
tion v3 network) have been widely utilized in identifying crop types of
the imagery (Ringland et al., 2019; Wu et al., 2021; Paliyam et al., 2021;
Yan and Ryu, 2021; d’Andrimont et al., 2022). Yet street view images (e.
g., Google Street View images) are typically collected in a huge amount

and encompass diverse landscapes of varying characteristics (e.g., urban
areas, forests, agricultural fields, and water bodies). To efficiently train a
deep learning classification model in large scale crop type retrieval, a
more focused approach on only agricultural street view images could be
utilized to reduce the complexities and confusion from non-agricultural
landscapes. However, even with agricultural landscapes as the focus, the
presence of non-crop elements in street view images such as weeds and
obstructions may still hinder the capability of deep learning models in
crop type identification. The timing of collecting agricultural street view
images also introduces complexity in crop identification. The images
may depict either bare land or lands with cover crops during non-
growing seasons. Addressing these issues necessitates a systematic
approach to the collection and processing of street view images for crop
type labeling. However, the development of such a targeted and oper-
ational method for large-scale street view imagery-based crop type
ground truthing remains underexplored in current research.

The accuracy of crop type information retrieved by deep learning
models is also closely tied to the quality of street view images. A range of
factors, such as varying lighting conditions, occlusions, viewing angles,
or distances from the crop, can introduce ambiguities or uncertainties to
crop type ground truthing from street view imagery (d’Andrimont et al.,
2018; Hou and Biljecki, 2022). The identification of crop types from
street view imagery can further be complexed by crop morphological or
structural variations due to seasonal changes as well as visual similar-
ities among crop species. To effectively tackle these complexities,
quantifying the uncertainty and the confidence level of each street view
image prediction becomes urgently needed in crop type ground truthing
(Abdar et al., 2021b; Yordanov et al., 2023). With the measure of un-
certainty, low-confidence predictions could be filtered out to avoid
wrongly assigning the same label to different crop types. Such uncer-
tainty assessment is crucial for providing reliable crop type labels for
downstream tasks, yet has rarely been considered in current studies.

The crop type information retrieved from geo-tagged street view
images is mostly pixel-based with a singular coordinate point denoting a
crop ground truth location (Yan and Ryu, 2021; Laguarta et al., 2024).
Object-based crop type ground truth, encompassing both crop type and
associated cropland boundaries, serves as a crucial spatial unit for policy
support in crop monitoring for farmers’ subsidies, yet it remains unex-
plored. Compared to pixel-based crop type ground truth, object-based
ground truth has enriched agricultural field characteristics and exhibi-
ted enhanced classification performance in crop type mapping tasks (Ok
et al., 2012; Kussul et al., 2016). This is due to the fact that object-based
ground truth could characterize agricultural fields more thoroughly and
diversely, with both within-object (e.g., spectral, texture, and shape
characteristics) and between-object information (e.g., connectivity,
contiguity, distances, and directional relationships among adjacent ob-
jects) represented (Zhang et al., 2018). In addition, when mapping large-
scale crop type distributions using remote sensing technique, the ag-
gregation of the remote sensing information from multiple pixels within
object-based agricultural boundaries could help alleviate cloud cover
issues of crop fields with potentially more available remote sensing
observations (Cai et al., 2018). Therefore, retrieving both crop types
from street view images and associated cropland boundaries becomes
vital in enhancing the value of collected ground truth.

The overarching goal of this study is to develop a large-scale oper-
ational framework, named CropSight, to retrieve the rich crop type
ground truth information at the object-based cropland level. CropSight
leverages the Google Street View (GSV) images and PlanetScope satellite
images to scalably retrieve crop types along with their corresponding
cropland boundaries. Focusing on dominant crop species in four desig-
nated study areas across the United States, our study encompasses three
specific goals: (1) design a systematic operational approach to collect
enhanced cropland field-view images from extensive GSV database for
subsequent crop type labeling; (2) develop an uncertainty-aware image
classification model, UncertainFusionNet, to retrieve crop types from
GSV imagery and quantify associated uncertainty (3) devise a fine-tuned
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Segmentation Anything Model (SAM) to automate the extraction of
cropland boundary corresponding to each GSV crop type image from
PlanetScope imagery. CropSight’s performance is evaluated via three
perspectives, including its capability in crop type classification from
field-view images, its effectiveness in cropland boundary delineation
with PlanetScope images, and the reliability of its collected crop type
data relative to established benchmark products (i.e., CDL).

2. Study area and data

2.1. Study area

Our study encompasses four unique agricultural regions (i.e., Illinois,
Southern Midwest, Texas, and California) in the US, each with different
dominant crop species (Fig. 1 and Table S1). In Illinois (study area A),
the agricultural landscape is dominated by corn and soybean, occupying
more than 95 % of the cultivated land. These two primary crops, typi-
cally rotated year on year, serve as the study crops for this region.
California (study area B) has diverse agricultural production owing to its
unique combination of climate and geography. In light of this agricul-
tural diversity, we select more crops including almond, corn, rice,
wheat, grape, and pistachio. Cotton and tomato are excluded from our
analysis due to insufficient GSV data for these crop species (Table S1). In
southern Texas (study area C), cotton, corn, and sorghum are selected as
the study crops because they are the three leading crop species, collec-
tively accounting for over 90 % of the cropland in this region. The
Southern Midwest (study area D) is dominated by corn, soybean, rice,
and cotton, collectively making up over 90 % of its cropland, and these

four crops are selected as the focus of our study in this region. The four
study areas exhibit large variations in dominant crop species, reflecting
the diversity in climate, soil conditions, and water availability across
regions. This diversity in regional crop species makes these areas suit-
able for evaluating our devised crop type ground truth retrieval frame-
work CropSight at large scales. The study period spans from 2013 to
2022, based upon the availability and quality of GSV images.

2.2. Data

To date, the most comprehensive and easily accessible repository of
street view imagery is Google Street View (GSV), published by Google
Maps (Anguelov et al., 2010). Since its launch in 2008, GSV has effec-
tively covered numerous countries, offering a vast collection of street-
level images spanning a long time period. The extensive and open ac-
cess nature of GSV makes it an invaluable resource for gathering ground
truth data across large geographical regions. Specifically, GSV images
provide panoramic views of surroundings, captured by cameras moun-
ted on vehicles as they pass through roads. Each GSV panoramic image is
accompanied by rich metadata including the Pano ID, Heading, Lati-
tude, Longitude, Month, and Year. The Pano ID is a unique identifier for
each panorama. The Heading refers to the direction that the vehicle with
a camera faces when it takes the panorama image. The Latitude,
Longitude, Month, and Year provide geographic and temporal infor-
mation when each panorama is captured. These metadata are vital for
optimizing the selection and preprocessing of panoramic images, sub-
sequently aiding in the identification of crop types from these images.
GSV metadata and panoramas are retrieved and downloaded from

Fig. 1. Four distinct study areas (A-D) situated in key production hotspots across the US, each characterized by different dominant crop types.
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Google Maps Platform (API: https://maps.googleapis.com/maps/api/st
reetview/).

In order to facilitate the crop type ground truth collection process,
pinpointing the GSV images with clear view of agricultural land is
critical. We utilize the WorldCover product to locate specific GSV points
within the GSV metadata database that have a higher likelihood of
showcasing agricultural landscapes. The WorldCover is a pioneering
global land cover product for 2020 and 2021 at 10 m resolution
generated through Sentinel-1 and Sentinel-2 satellite data (Zanaga et al.,
2022), which is suitable for application on a global scale. It provides 11
land cover classes including tree cover, shrubland, grassland, cropland,
built-up, bare/sparce vegetation, snow and ice, permanent water bodies,
herbaceous wetland, mangroves, and moss and lichen. In our frame-
work, we harness the ’cropland’ and ‘tree cover’ category to identify
appropriate agricultural GSV images at four study areas.. We also utilize
road network geospatial data from OpenStreetMap to help target the
GSV images with high potential capturing clearer views in the roadside
croplands. Additionally, we utilize the USDA’s Crop Progress Reports
(CPRs) to pinpoint local time windows in which there is a higher like-
lihood of capturing images of crops during the growing season in the
local fields. These CPRs offer weekly cumulative percentages of major
crops reaching specified phenological stages. GSV images collected
outside of the time window derived from CPRs are considered to capture
the barren landscape during the off-season and are excluded. The time
window is determined from the earliest recorded date for planting to the
latest recorded date for harvesting of local crop species. Given that the
almond and pistachio crops in study area B are not included in the CPRs,
the growing window for these species is established from April to
September, in accordance with the local climate conditions in California
(Bellvert et al., 2018). Alternatively, satellite time series data on crop-
lands could be employed to monitor crop calendars and establish the
optimal timing windows in regions where CPRs are unavailable.

After collecting the target cropland field-view images, the Planet-
Scope satellite imagery is leveraged to extract the boundary information
corresponding to each crop type image. PlanetScope’s high spatial

resolution (3-m) ensures the visibility of crop canopy features to detect
the boundaries of crop fields. Its high temporal resolution (2–3 days)
guarantees the availability of high-quality satellite imagery within the
month when the GSV image is collected. Its low latency (1 day) ensures
rapid access to PlanetScope satellite imagery, facilitating near-real-time
delineation of cropland boundaries.

Cropland Data Layer (CDL) is used as a benchmark product for the
evaluation of CropSight given its extensive coverage across the US and
its high accuracy. As one of the most influential crop type products of
US, CDL has been widely used as the large-scale crop type “ground truth”
for various agricultural and land use applications (Cai et al., 2018; Wang
et al., 2019; Johnson and Mueller, 2021; Lin et al., 2022; Zhang et al.,
2022). CDL provides 30-m pixel-based crop type data by harnessing
satellite time series combined with agricultural field surveys and other
ancillary data, processed through machine learning classifiers (Boryan
et al., 2011). Complementing its crop type information, CDL also pro-
vides a confidence byproduct, which reflects the confidence level of each
pixel’s crop type classification.

3. Methodology

CropSight is an operational framework that harnesses GSV and
PlanetScope imagery to remotely collect object-based crop type ground
truth information (Fig. 2). It comprises three key components: large-
scale operational cropland field-view imagery collection method (Sec-
tion 3.1.1), uncertainty-aware crop type image classification model
(UncertainFusionNet) (Section 3.1.2), and cropland boundary delinea-
tion model (SAM) (Section 3.1.3). The cropland field-view imagery
collection method is designed to collect geotagged field-view GSV im-
ages that are suitable for crop type ground truth retrieval at large scales
in an operational fashion. The UncertainFusionNet model is a novel
Bayesian convolutional neural network developed to identify crop types
in the acquired geotagged field-view images with uncertainty quanti-
fied. It integrates two state-of-the-art image classification models, vision
transformer (ViT-B16) and residual neural network (ResNet-50), to

Fig. 2. Overview flowchart of CropSight. The left module (3.1.1) is employed to operationally collect cropland field-view imagery over large scales. The upper
middle module (3.1.2) classifies these field-view images and estimates the prediction uncertainty metrics. The lower middle module (3.1.3) delineates the corre-
sponding cropland boundaries. The right module displays the final retrieved object-based crop type ground truth with crop type labels, associated uncertainty
metrics, and corresponding cropland boundaries.
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facilitate the crop type identification from the field-view images. Addi-
tionally, the model could estimate the uncertainty associated with each
prediction, a vital attribute that enables the identification and isolation
of predictions that are substantially uncertain. The SAM model is fine-
tuned and employed to delineate the cropland boundary correspond-
ing to each geotagged field-view image from PlanetScope imagery. It
utilizes the coordinate of a geotagged field-view image as a point prompt
to guide the delineation of cropland boundary associated with this field-
view image. With the geotagged GSV images and corresponding Plan-
etScope imagery, CropSight can retrieve object-based ground truth with
crop type labels, associated uncertainty metrics, and corresponding
cropland boundaries. CropSight’s performance is evaluated from three
perspectives, including its capability in crop type classification from
field-view images, its effectiveness in cropland boundary delineation
with PlanetScope images, and the reliability of its collected object-based
crop type information in the context of established benchmark products
(i.e., CDL). The codes, datasets, and crop type maps generated from
CropSight are open source: https://github.com/rssiuiuc/CropSight/.

3.1. CropSight

3.1.1. Operational cropland field-view imagery collection method
The operational cropland field-view imagery collection method is

developed to extract the cropland field-view images from the extensive

GSV database for large-scale operational crop type labelling (Fig. 3). The
method involves four main steps: collecting target GSV panorama im-
agery, extracting geotagged roadside images, removing outlier (non-
agricultural) roadside images, and enhancing cropland field-view im-
ages. These four steps ensure the relevance and quality of the street view
images used in the subsequent crop type identification process.

Firstly, the metadata of all available GSV panoramic images are
collected within the study area. Given the Latitude and Longitude in-
formation, each panoramic image is mapped with a specific GSV point. A
set of filtering algorithms (i.e., non-agricultural land filter, primary road
filter, road junction filter, and off-season filter) are sequentially utilized
to filter out the GSV points that are unlikely to link with clear agricul-
tural landscapes. The non-agricultural land filter is employed to remove
the GSV points along the non-agricultural fields. This is achieved by
overlaying the GSV points with the WorldCover land cover map. For
each GSV point, a circular buffer with a radius of 100-m is generated. If
this buffer does not contain any cropland pixels of WorldCover, the
corresponding GSV point is deemed irrelevant and subsequently
removed. The primary road filter and road junction filter are employed
to target the GSV images with high potential capturing clearer cropland
views using OpenStreetMap. The GSV images on the primary roads are
excluded due to the restricted field view caused by relatively large dis-
tance from the roads to the roadside fields. The GSV images from road
junctions are excluded due to challenges in determining the direction of

Fig. 3. Workflow of operational cropland field-view imagery collection method.
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croplands surrounding these intersections. The off-season filter is uti-
lized to filter out GSV points that are collected outside of the local crop
growing season. The specific time windows of crop growing season are
determined by local CPRs. This step is crucial to prevent the incorpo-
ration of GSV images that might depict barren landscapes during the
agricultural off-season. These four filters ensure that only the most
relevant and valuable GSV images are retained for crop type identifi-
cation. Subsequently, a spatial-adapted sampling strategy is imple-
mented to sample representative GSV points over large scales. This
strategy dynamically selects GSV points from the filtered GSV points
based on the required number of samples and the geographical scope of
the study areas. For each administrative region (i.e., county), a Fishnet
grid of uniform cells is established, covering the entire area. The cell
sizes are iteratively adjusted until the number of cells with GSV points
matches the desired sample size, which is calculated by dividing the
total required number of samples by the number of administrative re-
gions with filtered GSV points. In our study, the total required number of
samples is set at 10,000 for each study area to ensure the prepared
training data is adequately representative. Following the optimization of
the Fishnet grid for each region, one GSV point is randomly selected
from each cell. While we have set the county level as the default
administrative level, this can be adjusted to better fit the study area or
the total required number of sampling points. This spatial-adapted
sampling approach guarantees that the ground truth collected from
the available target GSV images is both geographically representative
and widely distributed in our study areas. Based on the sampled GSV
points, all the corresponding target GSV panoramic images (with the
resolution of 13,312 pixels by 6656 pixels) are downloaded.

Secondly, the gathered GSV panoramic images are transformed into
a set of two roadside images through a projection transformation. Spe-
cifically, the relative direction of the roadside view in relation to its
corresponding GSV point is calculated using the vehicle’s Heading
metadata. These panoramic images are then converted from the Equi-
rectangular projection to the Gnomonic projection, allowing for the
extraction of right and left roadside images (with the resolution of 2000
pixels by 2000 pixels) based on the calculated direction. Simultaneously,
the coordinates of the cropland in the roadside image are inferred by
offsetting its corresponding GSV point by 50 m in the calculated direc-
tion. Each extracted roadside image is then associated with its corre-
sponding inferred cropland coordinates for subsequent boundary
delineation.

Thirdly, the collection of geotagged roadside GSV images is further
refined by filtering out potential non-agricultural images using a pre-
trained VGG16 model. VGG16 is a deep convolutional neural network
known for its effectiveness in image recognition, comprising 13 con-
volutional layers and 3 fully connected layers (Simonyan and Zisserman,
2015). This 16-layer setup enables the precise extraction and analysis of
complex visual patterns. This step addresses the issue of potential mis-
classifications in the WorldCover land cover product, where non-
agricultural areas might be incorrectly labeled as agricultural ones.
The VGG16 model, pretrained on the Places2 dataset, is employed for
the refined screening of the geotagged roadside images (Zhou et al.,
2018). The Places2 dataset contains almost 10 million scene photos,
labeled with 476 scene categories and attributes. Only the images
belonging to the agriculture-related categories (i.e., field/cultivated,
field/wild, farm, corn_field, rice_paddy, field_road, vineyard, wheat_-
field, orchard, tree_farm, botanical_garden, and forest/broadleaf) are
retained for the follow-up classification. By removing the GSV images of
residential, commercial, and tourist areas, this process reduces the
complexity in crop type identification and improves the accuracy of the
resulting crop type ground truth data.

Lastly, the cropland field-view images are enhanced from the
remaining geotagged roadside GSV images to facilitate the crop type
identification. A canny edge-based zoom-in method is proposed to
automatically clip patches of the field from the GSV images. The canny
edge detection algorithm locates the boundary between the field and the

sky by detecting the edges present in the GSV images. After identifying
the boundary, the enhanced cropland field-view images (with the res-
olution of 500 pixels by 500 pixels) are derived by trimming out the
square patch located directly below the midpoint of the horizontal
boundary line (Fig. S1). This technique has been rigorously tested across
thousands of agricultural street view images, demonstrating robust
performance. This strategy ensures that the primary focus is on the crop
plant parts of the GSV images instead of weeds and other irrelevant el-
ements, thereby enhancing the deep learning model’s ability to accu-
rately identify target crop types (Taesiri et al., 2023). Also, it prevents
the potential loss of crucial plant visual features that can occur when a
large image of 2000 pixels by 2000 pixels is downscaled to 500 pixels by
500 pixels as input into a deep learning model due to the computational
resource constrains.

3.1.2. Uncertainty-aware crop type image classification model
To retrieve the crop type labels from the enhanced geotagged crop-

land field-view images, we propose the uncertainty-aware crop type
image classification model: UncertainFusionNet (Fig. 4). This model is
distinctively crafted with feature fusion mechanisms and uncertainty-
aware prediction. Specifically, UncertainFusionNet contains two key
components: 1) The feature fusion module, which concatenates local
and global salient visual features learned by ViT-B16 and ResNet-50 for
field-view image classification. 2) The Bayesian classification module,
which quantifies the uncertainty associated with each prediction using
Monte Carlo (MC) dropout sampling to filter out low-confidence clas-
sifications. The model architecture is detailed in the following sections.

The feature fusion module has two major branches. The first branch
is the ResNet-50, a pioneering convolutional neural network for image
classification (He et al., 2016). It leverages a hierarchy of residual blocks
to methodically extract complex image features, thereby enriching the
model’s pattern discernment at various depths. Complementarily, ViT-
B16, as the second branch, segments imagery into patches and
employing self-attention mechanisms for sequential analysis (Doso-
vitskiy et al., 2021). It enables a comprehensive examination of the
imagery, capturing extensive spatial relationships and contextual details
across the field of view. By combining the unique and complementary
strengths of these two architectures, the fusion strategy equips Uncer-
tainFusionNet with the ability to analyze both intricate local and salient
global crop features in field-view images, facilitating crop type
identification.

Specifically, the first branch (ResNet-50) incorporates skip connec-
tions, which create direct pathways between shallower and deeper
layers in the network to overcome the vanishing gradient problem that
commonly arises in deep neural networks. This enables ResNet-50 to
learn more complex and discriminative crop features from images.
ResNet-50 begins with a layer normalization layer (Layer Norm), fol-
lowed by stage 1 including convolutional layer (CONV), batch normal-
ization layer, ReLU activation layer, and max pooling layer. Progressing
through stages 2 to 5, ResNet-50 alternates between convolutional
(Conv) and identity (ID) blocks, each incorporating skip connections.
These blocks ensure that input and output dimensions match, main-
taining uniform feature processing as the network advances into deeper
stages. Within each stage, ID blocks enable the unmodified transfer of
features by directly applying skip connections. In contrast, Conv blocks
introduce convolutional adjustments in their skip pathways, strategi-
cally tailoring features to match the network’s changing dimensional
requirements. This approach is pivotal for enabling hierarchical feature
learning, allowing the network to efficiently abstract complex patterns
at various depths. This architectural design allows ResNet-50 to progress
from extracting local crop features to synthesizing these into compre-
hensive global representations. The second branch (ViT-B16) is a
transformer-based model that employs a self-attention mechanism to
model relationships between different regions of an image. ViT-B16 has
been shown to be highly effective in computer vision tasks (e.g., image
classification, segmentation, action recognition) (Han et al., 2023). It
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divides the input image into small patches and flattens them into se-
quences, which are then processed by a transformer encoder to learn
global features. The transformer encoder is composed of ‘L’ blocks. Each
block starts with a Layer Norm layer for stabilizing inputs, and is fol-
lowed by a Multi-head Self-Attention (MHSA) module. This module
enables the model to focus on and integrate different parts of the image
simultaneously, thus improving crop feature extraction and contextual
understanding. A skip connection is utilized to merge the raw input with
the MHSA output. Subsequently, another Layer Norm layer is applied
before the Multilayer Perceptron (MLP) module. The MLP module, with
its multiple dense layers, is employed to learn complex crop visual
patterns in the data. A second skip connection incorporates the MHSA
output (before the second Layer Norm layer) into the MLP’s output. The
enhanced output is then fed into the next block. This recursive pro-
cessing ensures a deep, layered comprehension of the visual data,
allowing the ViT-B16 to extract features with increasing sophistication,
thereby boosting its analytical capabilities for complex vision tasks.

The Bayesian classification module utilizes the fused features and
Bayesian theory to retrieve crop type labels and estimate the prediction
uncertainty. It consists of two dense layers (also known as fully con-
nected layers), with each followed by a dropout layer. The dropout
layers serve two purposes: 1) improving network’s generalization per-
formance by mitigating overfitting during the training phase, and 2)
enabling the Bayesian inference by the MC dropout technique (Gal and
Ghahramani, 2016).

In a Bayesian convolutional neural network, the model output is
described as a predictive distribution p(y*|x*,X,Y) (Eq. (1)), rather than
the deterministic point estimate (i.e., y* = f(x*)) in the conventional
neural networks. This predictive distribution integrates the model like-
lihood (i.e., p(y*|x*, θ)) over the posterior distribution of the model
weights θ (i.e., p(θ|X,Y)):

p(y*|x*,X,Y) = p
(
(y*

1, y
*
2,⋯, y*

c)|x
*,X,Y

)

=

∫

p
(
(y*

1, y
*
2,⋯, y*

c)|x
*, θ
)
p(θ|X,Y)dθ (1)

where x* denotes an input image, and y* denotes the corresponding
output of the neural network model constructed with the training data X
and Y. y* is a vector comprising elements y*

1, y*
2, ⋯, y*

c , with y*
c in this

vector signifying the predicted probability of class c, obtained through a
softmax function. θ represents the set of weight parameters of the
trained neural network model.

The posterior distribution p(θ|X,Y) is typically intractable for direct
computation. To address this, the MC dropout is employed as a practical
approximation method. The MC dropout follows a Bernoulli distribu-
tion, introducing a form of variability akin to training multiple sub-
networks. Each sub-network is formulated with a different set of
model weights. This method effectively mimics sampling from the pos-
terior distribution of model weights for the Bayesian inference. During
the inference, the MC dropout is applied to generate multiple sets of
weights {θ1, θ2,⋯ , θt} by activating dropout. Each set of weights θt is
used to make a prediction y*, resulting in a total of T forward pass
predictions. These T predictions are then aggregated to estimate the
final predictive distribution. The expected value of the predictive dis-
tribution is estimated as the average of all predictions (Eq. (2)):

E(p
(
(y*

1, y
*
2,⋯, y*

c)|x
*,X,Y

)
) ≈

1
T
∑T

t=1
p
(
(y*

1, y
*
2,⋯, y*

c)|x
*, θt

)
(2)

By implementing the MC dropout for the Bayesian inference, Uncer-
tainFusionNet produces probabilistic predictions with uncertainty esti-
mates, enabling the identification and filtering of low confidence crop
type predictions. Uncertainty is quantified using two metrics: entropy
(H) (Eq. (3)) and variance (σ2) (Eq. (4)). Entropy is a measure of the
disorder in the model’s predictions, with higher entropy indicating a

Fig. 4. Architecture of UncertainFusionNet model with feature fusion module and Bayesian classification module. The feature fusion module consists of dual
branches: Vision Transformer (upper branch) and ResNet-50 (lower branch). The Bayesian classification module outputs the probability distribution of each crop type
and the overall prediction uncertainty measures (i.e., variance and entropy).
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larger degree of unpredictability in the model’s outputs. Variance is a
measure of the spread in the model’s predictive probability of each class.
A high predictive variance indicates that the model’s predictions given
multiple sets of weights {θ1, θ2,⋯ , θt} exhibit considerable variability
within each class, implying higher uncertainty. Conversely, a low pre-
dictive variance indicates that the model’s predictions are concentrated
for each class, implying higher confidence.

where C denotes the number of crop type classes, while T indicates the
number of forward passes.

To effectively filter out predictions with high uncertainty, Uncer-
tainFusionNet takes into account both entropy and variance for quan-
tifying uncertainty with predefined thresholds set according to
literatures (Abdar et al., 2021a; Gour and Jain, 2022; Arco et al., 2023).
These thresholds are determined by analyzing the intersection points of
the uncertainty metrics’ density distributions (i.e., variance or entropy)
for both correctly and wrongly identified samples among all classes
during the UncertainFusionNet training (Fig. 5). Setting the thresholds
at these intersections facilitates an optimal tradeoff between classifica-
tion precision and amount of field-view images for ground truth
collection. The filtering rule is expressed with an indicator function rx*

(Eq. (5)).

rx* = 1x*
(
H, σ2) =

{
1, if H < Hthr, σ2 < σ2

thr
0, otherwise (5)

where an output of 1 signifies that a prediction has relatively high
confidence and should be retained. An output of 0 indicates that a
prediction has relatively high uncertainty and should be removed.

During the training process, an uncertainty-aware loss function (Eq.
(6)) is employed to optimize the parameters of the model. The
uncertainty-aware loss function not only includes the conventional
cross-entropy (CE) loss function that is used to improve the predictive

probability of the ground truth classes, but also the predictive uncer-
tainty (i.e., entropy) to strengthen the differentiation of uncertainty
measures between correct and wrong predictions (Shamsi et al., 2023).
Compared to the conventional image classification loss function based
only on cross-entropy, the uncertainty-aware loss function can minimize
the overlay between the uncertainty distributions of correctly classified
and wrongly classified samples (Fig. 5), while maintaining the overall

classification performance of UncertainFusionNet. Consequently, this
leads to more reliable and confident crop type labelling with consider-
ation of both crop prediction probability as well as associated
uncertainty.

Loss =
1
N
∑N

i=1
(−
∑C

c=1
ticlog(y*

ic) + (−
∑C

c=1
y*
iclog(y

*
ic))) (6)

where tic is 1 when c is the index of correct class for the i th field-view
image, otherwise it is 0. y*

ic is the model’s predicted probability that
the i th field-view image belongs to the cth class. N represents the number
of all field-view images.

For each of our study areas, we train the UncertainFusionNet model
using the corresponding CropGSV dataset, which is collected by the
cropland field-view image collection method (Section 3.1.1). Fig. 6
displays all target crop-specific field-view images from the CropGSV
dataset across four distinct study areas. From the 10,000 images
sampled in each study area, each field-view image is manually labeled
by a plant taxonomy expert with locally dominant crop types and an
’others’ category. Images that do not represent the locally target crop
types or those that are hard to identify due to factors such as poor
lighting, blurring, or obstruction are categorized as ‘others.’ This
focused approach facilities us to concentrate our analysis on crop species
that consistently dominate local farming practices (Table S1). To ensure
a balanced distribution of high-quality images for each class across all
study areas, the surplus of low-quality ’others’ GSV images from each
study area is removed. The final dataset includes 4,508 images from
study area A, 5,638 images from study area B, 5,074 images from study
area C, and 6,005 images from study area D. Considering the similar
visual attributes of rice and winter wheat, field-view images of ‘rice’ and
‘winter wheat’ at study area B are jointly classified as the ‘cereal’ cate-
gory. In each study area, the CropGSV dataset is randomly divided into
60 %, 20 %, and 20 % for training, validation, and testing of the
UncertainFusionNet model, respectively.

Within UncertainFusionNet, the ResNet-50 and ViT-B16 of the
feature fusion module are initialized with the respective parameters
pretrained on ImageNet dataset. This initialization helps equip the
UncertainFusionNet with a strong visual feature extraction ability,
which is beneficial to its adaptation to new tasks with fine-tuning. The
remaining layers are initialized with random parameters. The hyper-
parameters for UncertainFusionNet (e.g., network architecture, learning
rate, number of epochs, etc.) are determined by optimizing the model
performance using the validation dataset, ensuring the model is both
robust and generalizable. With a range of experiments in reference to
previous studies (Gupta et al., 2021; Gour and Jain, 2022), stochastic
gradient descent (SGD) is selected as the optimizer with learning rate of
0.001 and momentum of 0.9. The batch size is 16, and the number of

Fig. 5. Uncertainty distribution for correctly (blue) and incorrectly (red)
classified samples by the UncertainFusionNet model, with the uncertainty
threshold determined at the intersection of the two density curves. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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epochs is 150. Early stopping based on the validation dataset is used in
the fine-tuning process to prevent the network from overfitting when the
validation loss stops decreasing.

3.1.3. CropGSV-based cropland boundary delineation model
With the crop type labels retrieved from the geotagged cropland

field-view images, SAM is employed and fine-tuned to delineate the
cropland boundaries associated with these crop type images. SAM is a
highly effective state-of-the-art model designed to segment an object of

interest in an image given certain prompts provided by a user (Kirillov
et al., 2023). SAM diverges from traditional segmentation models by
introducing a pioneering promptable segmentation strategy. Utilizing
satellite imagery as the primary input and coordinates derived from
geotagged field-view images as point prompts, SAM model emerges as
an optimally tailored solution for extracting the cropland boundary
corresponding to each field-view image in CropSight (Fig. 7). Specif-
ically, it comprises three main components: an image encoder, a flexible
prompt encoder, and a fast mask decoder: (1) The image encoder is

Fig. 6. Samples of CropGSV dataset showcasing field-view images of various crop types across four study areas.

Fig. 7. Structure of SAM model.
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grounded on the architecture of a typical ViT. It is utilized to extract
visual features from satellite images and convert them into image em-
beddings; (2) The prompt encoder is distinctively designed to embed
user interactions (i.e., prompts) into an embedding vector effectively. It
supports four types of prompts (i.e., points, boxes, texts, and masks),
allowing for flexibility and adaptability to various user intervention. In
our study, we utilize points inferred from the geotagged CropGSV im-
ages as the prompt; (3) The mask decoder is a modified Transformer
decoder block, which can generate segmentation results along with
confidence scores (i.e., estimated Interaction over Union (IoU)) based on
the image embedding and prompt embedding. It uses two-way cross-
attention, one for prompt-to-image embedding and the other for image-
to-prompt embedding to learn the interaction between the prompt and
image embedding for the mask (i.e., cropland boundary) generating.

In CropSight, SAM is further fine-tuned to improve its performance in
delineating cropland boundaries from PlanetScope satellite images. We
prioritize PlanetScope images that are free from cloud cover using the
quality control layers, and select those captured in the same month as
that of the corresponding GSV imagery collection for delineating crop-
land boundaries. SAM is built on an unprecedentedly large segmentation
dataset, including over 1 billion ground-truth segmentation masks on 11
million natural images (Kirillov et al., 2023). The good accuracy of SAM
in zero-shot applications indicates its potential to deliver reliable seg-
mentation results of natural images without the need for re-training or
fine-tuning on new, unseen datasets or segmentation tasks (Kirillov
et al., 2023). Yet, the ability of SAM to conduct satellite image seg-
mentation cannot be guaranteed due to the notable disparities between
natural images and satellite images. Several studies have shown that the
performance of SAM may degrade in challenging scenarios where the
targets have weak boundaries (e.g., medical image) (Osco et al., 2023),
as SAM’s training set mainly contains natural images where the objects
usually have strong and characteristic edges. Hence, our study employs a
fine-tuning approach to adapt SAM specifically for satellite image seg-
mentation, with a focus on accurately delineating cropland boundaries.

For each study area, we fine-tune the mask decoder of the SAM
model while freezing the image encoder and prompt encoder using the
manually collected CropBoundary dataset (Fig. 8). Fine-tuning only the
mask decoder is demonstrated as the most computationally efficient

adaptation method, effectively balancing resource use while ensuring
satisfactory performance improvement of the base SAM model on new
segmentation tasks (Li et al., 2023). The CropBoundary dataset consists
of 200 high-resolution PlanetScope image tiles (1024 pixels by 1024
pixels) and associated digitized cropland boundaries with 50 tiles per
each of the four study areas, covering diverse agricultural fields of
varying sizes and patterns. Each tile captures detailed views of agri-
cultural land during the growing season alongside accurately digitized
cropland boundaries. In the process of building up the CropBoundary
dataset, we initially employ the base SAM model to roughly delineate
the boundary of each cropland using PlanetScope imagery with cropland
points determined by visual interpretation as inputs. Manual re-
finements are then applied to all the fields to generate the cropland
boundary reference. We focus on productive boundaries, which refer to
the demarcations between different crop types, even when no physical
boundaries exist within the same field. This approach ensures accurate
delineation based on crop type rather than visible physical separations.
In cases where PlanetScope imagery shows unclear boundaries for field
parcels, potentially due to multiple crops planted in a single field, we
exam images from different dates throughout the season to determine
the precise parcel boundaries. The boundary data collection strategy
reduces the labor intensity of manual labeling by leveraging the base
SAM model’s boundary identification capabilities.

For each study area, we split the corresponding 50 annotated images
into training, validation, and testing datasets using the ratio 60 %, 20 %,
and 20 %, respectively. These tailored datasets ensure the boundary
delineation model is fine tuned to perform optimally under the unique
agricultural conditions specific to each area. With the collected Crop-
Boundary dataset, the base SAM model is fine-tuned using a loss func-
tion that combines the dice score loss and the confidence score loss (Eq.
(9)). In each batch, the dice score loss, calculated for all cropland
boundary masks, is the average of the difference between 1 and the dice
score for each individual mask. The dice score measures the degree of
overlap between the predicted and ground truth cropland boundary
masks. It is calculated by dividing the twice of the area of overlap
(Intersection) between the predicted and ground truth masks by the total
area of prediction and ground truth (Eq. (8)). In each batch, the confi-
dence score loss, calculated for all cropland boundary masks, is the

Fig. 8. Samples of CropBoundary dataset showcasing PlanetScope imagery and corresponding digitized cropland boundaries across four study areas A-D.
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mean-square-error (MSE) between SAM’s estimated IoU and the actual
IoU between the predicted and ground truth masks (Eq. (9)). IoU
quantifies the extent of overlap between the predicted mask and the
ground truth mask. It is computed by dividing the area of overlap
(Intersection) between the predicted and ground truth masks by the
combined area of both (Eq. (7)). The estimated IoU is the output of SAM
model. With a range of experiments in reference to previous studies (Li
et al., 2023), Adam is selected as the optimizer with learning rate set as
0.00001 and weight decay as 0.9. The batch size is 2, and the number of
epochs is 50. Early stopping based on the validation dataset is used in the
fine-tuning process to prevent the network from overfitting when the
validation loss stops decreasing.

IoU =
Intersection

Prediction+ GroundTruth − Intersection
(7)

Dice =
2*Intersection

Prediction+ GroundTruth
(8)

Loss =
1
N
∑N

i=1
(estimatedIoUi − IoUi)

2
+

1
N
∑N

i=1
(1 − Dicei) (9)

where N represents the number of ground truth cropland boundaries.

3.2. CropSight framework evaluation

3.2.1. Crop type retrieval
To gain insights into UncertainFusionNet’s efficacy in classifying

crop types from field-view images, we compare its performance with
that of FusionNet, a variant of UncertainFusionNet that maintains the
same modeling architecture yet does not accommodate uncertainty.
FusionNet utilizes the cross-entropy loss function to optimize its pa-
rameters and no MC dropout is utilized. Furthermore, we compare
UncertainFusionNet’s performance with that of two advanced bench-
mark models in UncertainFusionNet (i.e., ResNet-50 and ViT-B16). For a
fair comparison, these two benchmark models are initialized with
ImageNet pre-trained parameters and fine-tuned on the same dataset
utilized by UncertainFusionNet. To analyze the capability of these
models in feature learning and differentiation, we employ t-Distributed
Stochastic Neighbor Embedding (t-SNE) visualization on features from
each model’s penultimate layer. This layer is chosen for the visualization
because it typically contains the most refined and high-level feature
representations learned by the model, just before the final classification
layer, thus providing a comprehensive insight into the model’s ability to
differentiate among various crop type classes. T-SNE is able to project
and visualize high-dimensional data into a more interpretable two-
dimensional space. It operates by modeling the probability distribu-
tions of data points in the high-dimensional space and then seeking a
low-dimensional representation that preserves these distributions. Spe-
cifically, t-SNE calculates the similarities between points in the high-
dimensional space and then optimizes the low-dimensional embedding
such that similar points remain close together while dissimilar points are
positioned far apart. The t-SNE analysis of the penultimate layer features
aids in understanding the distribution and separation of the features
learned by models. The t-SNE results are further analyzed using the
Silhouette score, a key metric for evaluating class separability and
cluster distinction.

Additionally, we utilize the Gradient-weighted Class Activation
Mapping (Grad-CAM) visualization technique to visualize the significant
features extracted by two distinct branches (i.e., ResNet-50 and ViT-
B16) of the fine-tuned UncertainFusionNet model when processing
field-view images. Grad-CAM highlights important areas in input images
by using the gradients of a specific class being detected, as they flow into
the final convolutional layer. These gradients are captured and projected
back onto the input image, creating a heatmap that indicates which
regions are most influential in the model’s decision-making process.

Precision, recall, F1, and overall accuracy are calculated to assess

models’ performance on the CropGSV testing dataset. Precision (Eq.
(10)) is defined as the ratio of true positive (TP) predictions to the sum of
true positives and false positives (FP). This metric focuses on the model’s
ability to correctly identify the field-view images of specific crop type
without mislabeling other types as that crop. Recall (Eq. (11)) is calcu-
lated as the ratio of true positives to the sum of true positives and false
negatives (FN). This metric quantifies the model’s ability in correctly
capturing all relevant field-view images of specific crop type. Precision
and Recall are individually calculated for each crop type, as well as
aggregated across all types, providing both specific and holistic insights
into the model’s performance in identifying different crops. F1 score
(Eq. (12)) is calculated as the harmonic mean of precision and recall for
each crop type, reflecting the model’s balanced performance in correctly
identifying and capturing all field-view images of specific crop type. We
average the F1 scores of all crop types to provide an overall view of the
model’s performance for crop type image classification. Overall accu-
racy (Eq. (13)) is a widely used metric that calculates the total propor-
tion of correct predictions (both true positives and true negatives (TN))
across all types of crops for evaluating the model’s general effectiveness
across all crop types. Together, these metrics provide a comprehensive
evaluation of the models’ performance in retrieving crop types from GSV
images.

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

F1 =
2*Precision*Recall
Precision+ Recall

(12)

Overall accuracy =
TP+ TN

TP+ FP+ TN+ FN
(13)

3.2.2. Cropland boundary delineation
To assess the fine-tuned SAM model’s ability of delineating cropland

boundaries from PlanetScope images, we compare its performance with
that of the base SAM and the Mask Region-based Convolutional Neural
Network (Mask-RCNN). Mask-RCNN is one of the state-of-the-art model
for instance segmentation that combines object detection and semantic
segmentation (Waldner and Diakogiannis, 2020; Jong et al., 2022; Wang
et al., 2022). It utilizes ResNet-50 as its backbone for feature extraction.
Building on this, Mask-RCNN then employs a Region Proposal Network
to detect objects and create corresponding bounding boxes, followed by
a separate branch for generating precise segmentation masks within
each identified bounding box (He et al., 2018). To ensure an equitable
comparison and align with the promptable design of SAM, we refine the
output of Mask-RCNN, pinpointing the final cropland boundaries by
identifying the detected masks that encompass the relevant GSV image
coordinates. We fine-tune the Mask-RCNN model initialized with
ResNet-50 pretrained on ImageNet with our collected CropBoundary
training dataset (Mei et al., 2022). All the parameters of Mask-RCNN are
fine-tuned with the same CropBoundary training dataset as used by the
SAM model.

With the base SAM, fine-tuned SAM and fine-tuned Mask-RCNN
models, we assess their performance using the CropBoundary testing
dataset. We evaluate the models’ performance in boundary delineation
at the object level using precision (Eq. (10)), recall (Eq. (11)), and F1
(Eq. (12)) to align with our goal of retrieving object-based crop type
ground truth. The IoU threshold of 0.50 is utilized to determine the
accuracy of cropland boundary delineation (G. Braga et al., 2020; Jong
et al., 2022; Li et al., 2021; Mei et al., 2022). The cropland boundary is
deemed correctly delineated (TP) if its IoU value exceeds 0.5. A false
positive (FP) is recorded when the IoU value lies between 0 and 0.5,
indicating a partial but incorrect overlap between the predicted and
ground truth field boundaries. A false negative (FN) is noted when the
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IoU value is 0, signifying that the model entirely misses the cropland
boundary present in the image.

3.2.3. Evaluation of CropSight and benchmark crop type product
To assess the reliability of CropSight’s collected object-based crop

type information, we evaluate the quality of crop type information
retrieved by CropSight along with the corresponding benchmark CDL
crop information using a more extensive object-based crop type ground
truth data (i.e., both crop type and associated field boundary) collected
from GSV images and satellite images. This dataset includes a wider
array of crop type samples across different CDL confidence levels. The
varying levels of CDL confidence reflect diverse crop characteristics on

the ground, facilitating a more thorough comparison and assessment.
Specifically, we employ the cropland field-view collection method
(section 3.1.1) to locate relevant GSV points and sample them across
confidence levels of CDL. We then collect corresponding object-based
crop type ground truth from GSV and PlanetScope images by visual
interpretation. Any ambiguous samples are excluded from this ground
truth dataset. At every study area, we collect 200 object-based ground
truth samples for each study crop type.

Given that CDL is the pixel-based crop type classification product, we
evaluate the performance of CDL and CropSight in retrieving crop type
information at both pixel- and aggregated object-levels. For a compre-
hensive comparison, we calculate overall accuracy as well as precision

Fig. 9. Confusion matrix showing the performance of the UncertainFusionNet model (with incorporating uncertainty) in identifying the predominant crop species
across four study areas A-D. The results are based on field-view image classification from the corresponding CropGSV test datasets.
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for each crop species at both levels. The overall accuracy indicates the
proportion of correctly identified crop types. Precision for each crop
type indicates the proportion of correctly identified instances of that
crop type out of all instances classified as that type, and is selected due to
its importance in evaluating the quality of ground truthing for each crop
type. At the pixel-level, we overlay the crop type label information from
both CDL and CropSight with ground truth cropland boundaries. Crop-
Sight’s pixel-level labels are consistent within a single field due to its
unique GSV-based retrieved method. CDL’s pixel-level labels are directly
retrieved from the CDL layer. To evaluate pixel-level accuracy, we
compare the estimated crop type labels of the pixels within the bound-
aries against the ground truth labels for those pixels. At the object-level,
we overlay the crop type label information from both CDL and CropSight
with the cropland boundaries detected by CropSight to ensure a fair
comparison. CDL’s object-level labels are derived from the most com-
mon crop type among its pixels within field boundaries. To assess object-
level accuracy, we examine whether the estimated object-level crop type
information aligns with the ground truth. Correctly retrieved samples at
this level are defined as those with both matching crop type labels and
accurately delineated cropland boundaries with corresponding IoU
values exceeding 0.5 (section 3.2.2).

To evaluate crop label availability for downstream mapping tasks,
we employ the CropSight framework to gather crop type labels in four
study areas and create density maps. These maps display the distribution
of crop type labels across 50 km by 50 km grids, providing insights into
label density crucial for crop type mapping. To extend the evaluation of
CropSight’s applicability in regions with diverse agricultural practices,
we further assess the accuracy of the object-based crop type ground
truth data retrieved by CropSight in Brazil by following the same pro-
cedure as the extensive object-based crop type ground truth data
collected in US. Our study area covers Paraná and São Paulo, which are
key agricultural regions in Brazil and are predominantly cultivated with
key crops such as soybeans, corn, sugarcane, and wheat. This area ex-
hibits a mix of advanced agricultural technologies and traditional
practices (e.g., manual labor), in contrast to the extensively mechanized
agriculture predominant in the US (Bolfe et al., 2020). Additionally, the
fields in Brazil are more fragmented with irregular shapes and varying
sizes compared to those in the US (Fig. S4).

4. Results

4.1. Crop type identification

4.1.1. Performance of UncertainFusionNet
Fig. 9 shows the confusion matrix of crop type identification results

of UncertainFusionNet on CropGSV testing dataset across four study
areas. At study area A, UncertainFusionNet demonstrates strong
discriminatory ability, effectively distinguishing between ‘corn’ and
‘soybean’ with minimal misclassification. It achieves precision rates of
98.92 % for ‘corn’ field-view images and 96.17 % for ‘soybean’field-
view images. Additionally, the model exhibits high recall for these two
categories, each exceeding 98.4 %, suggesting its robustness in accu-
rately identifying true instances of each crop type. Within study area B,
UncertainFusionNet excels with an accurate classification of ’corn’ field-
view images, reaching 100 % precision and recall. This exceptional
performance is likely attributed to the distinct characteristics of corn,
such as its long leaves and stalks, which are unique compared to other
local crop types. Additionally, the model precisely identifies ‘almond’,
‘cereal’, ‘grape’, and ‘pistachio’, with each category achieving a preci-
sion rate exceeding 98.6 %. UncertainFusionNet effectively distin-
guishes between ‘almond’ and ‘pistachio’, despite both being tree crops
with similar-looking leaves. As for study area C, UncertainFusionNet
shows high accuracy in classifying ‘cotton’ field-view images, achieving
a precision rate of 100 % and a recall rate of 99.46 %. In the classifi-
cation of ‘corn’ and ‘sorghum’ field-view images, it maintains high
precision, reaching 97.91 % for ‘corn’ and 99.54 % for ‘sorghum’. At

study area D, UncertainFusionNet exhibits good classification precision
for field-view images of ‘corn’, ‘cotton’, and ‘soybean’, consistently
exceeding 98.6 %. UncertainFusionNet’s recall accuracy is consistently
higher than 97.7 % across all local species. Overall, these results high-
light UncertainFusionNet’s strong capability in accurately identifying
crop types from field-view images across diverse agricultural
landscapes.

4.1.2. Impact of uncertainty
Table 1 presents a comparative analysis between FusionNet and

UncertainFusionNet in terms of their performance in identifying crop
types from field-view images across all study areas using the CropGSV
test dataset. Across four study areas, UncertainFusionNet consistently
surpasses FusionNet, exhibiting superior precision, recall, F1 scores, and
overall accuracy with improvements in each metric ranging between
0.02 and 0.06. UncertainFusionNet achieves these accuracy metrics of
around 0.98 for all the study areas (Table 1). In particular at study area
D, UncertainFusionNet shows a significant improvement in field-view
crop type classification over FusionNet, with overall accuracy of
0.9883 versus 0.9385. This improvement is likely attributed to Uncer-
tainFusionNet’s enhanced ability in handling the field-view images of
other plants (e.g., grass and weed) with visual similarities to target crops
(e.g., rice). With the Bayesian design, UncertainFusionNet can assess the
uncertainty level of its prediction. This uncertainty measure enables the
model to identify and exclude ambiguous samples, particularly those
with similar visual features in planting structures, appearances, and
colors to target crops. These results highlight the value of integrating
uncertainty information into predictions, thereby improving the accu-
racy of determined crop type labels.

During the process of crop type labelling, UncertainFusionNet le-
verages uncertainty information (i.e., variance and entropy) associated
with each field-view image prediction to help enhance the confidence
and reliability of collected crop type labels (Fig. 10). These uncertainty
measures are calculated based on the probability distribution of all the
classes. Field-view images exhibiting high variance or entropy are dis-
carded by UncertainFusionNet (where rx* = 1 indicates retaining, and
rx* = 0 indicates discarding). Specifically in Fig. 10, (a) displays two
‘corn’ field-view images at study area A. The left image, characterized by
high uncertainty and confusion between harvested corn and soybean of
similar stage, is discarded. In contrast, the right image with distinct corn
leaves and silking is retained with its low uncertainty; (b) presents two
‘grape’ field-view images at study area B. Despite correct identification,
the left image exhibits elevated uncertainty, potentially due to weed
interference and empty trellises. The right image with orderly rows of
grapevines with lush green leaves above trellises is classified with more
confidence; In (c), two ‘sorghum’ field-view images with different con-
fidence at study area C are shown. The left image is contaminated by
weed, resulting in confusion among the classes ‘sorghum’, ’corn’, and
’others’ and high uncertainty in the identification process. The sorghum

Table 1
Performance evaluation of UncertainFusionNet and FusionNet in crop type
identification across study areas A-D. Evaluation metrics (i.e., precision, recall,
F1, and overall accuracy) are derived from the CropGSV test datasets for each
study area.

Method Study
area

Precision Recall F1 Overall
accuracy

FusionNet

A 0.9551 0.9654 0.9600 0.9589
B 0.9658 0.9650 0.9653 0.9627
C 0.9627 0.9625 0.9629 0.9576
D 0.9377 0.9182 0.9270 0.9385

UncertainFusionNet

A 0.9803 0.9847 0.9824 0.9823
B 0.9887 0.9883 0.9885 0.9888
C 0.9887 0.9883 0.9885 0.9779
D 0.9853 0.9871 0.9862 0.9883
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Fig. 10. Visualization of crop type labelling processes of the UncertainFusionNet model across four study areas A-D. Each field-view image is accompanied by
uncertainty information (i.e., variance and entropy) and confidence indicator (rx* ), where rx* = 1 denotes high confidence and rx* = 0 signifies low confidence. (a)
displays the corn field-view images at study area A; (b) presents the grape field-view images at study area B; (c) shows the sorghum field-view images at study area C;
(d) shows the cotton field-view images at study area D.

Fig. 11. Comparative performance analysis (i.e., F1, precision, and recall) of UncertainFusionNet and FusionNet (without incorporating uncertainty) in identifying
the dominant crop species across four study areas A-D. The evaluation is based on field-view image classification results from the corresponding CropGSV
test datasets.
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plants are neatly arranged in the right image with vibrant green leaves
and unique inflorescence structures, forming compact clusters in spike
shapes, which is confidently classified with low uncertainty; (d) shows
predictions for two ‘cotton’ field-view images at study area D. The right
image, with visible white blooms, is identified as ‘cotton’ with high
confidence, whereas the left image, though labeled as ‘cotton’, exhibits
significant uncertainty, possibly due to background trees and fore-
ground weed interference. Across all study areas, images with more
distinct features of crops (e.g., leaf shape, canopy morphology, and
flowering) tend to yield lower variance and entropy derived from cor-
responding probability distributions. However, in situations where im-
ages share common features among different local plants and target
crops, the model may produce inaccurate classifications characterized
by high variance and entropy. This underscores that the integration of
these uncertainty measures within UncertainFusionNet serves as a vital
filter, bolstering both the robustness and reliability of collected crop
type labels across varied field conditions.

By accounting for the uncertainty in each prediction, UncertainFu-
sionNet effectively diminishes misclassifications, yielding improve-
ments in precision, recall and F1 score for each crop species throughout
all study areas, in comparison to FusionNet (Fig. 11). At study area A,
UncertainFusionNet demonstrates an advantage over FusionNet,
achieving a 1–4 % increase in accuracy across recall, precision, and F1
scores, with all metrics exceeding 96 % for the classification of each crop
type. The precision of classifying ‘soybean’ field-view images increases
the most by approximately 4 %. At study area B, UncertainFusionNet
achieves a 2 % enhancement in all accuracy metrics for classifying
’almond’, ’grape’, and ’pistachio’ field-view images over FusionNet, and
an even more pronounced 5 % increase for ’cereal’ field-view images.
These improvements are attributed to UncertainFusionNet’s estimation
of prediction uncertainty, which effectively reduces misclassifications
arising from visually similar plants/crops at various growth stages. This
is especially apparent in distinguishing between ’pistachio’ and
’almond’, as well as between ’cereal’ and ’others’ (Fig. 9 and Fig. S2). At
study area C, UncertainFusionNet outperforms FusionNet in classifying
’corn’ and ’cotton’ field-view images, surpassing it by approximately
1–2 % across all accuracy metrics and consistently maintaining over
97.5 %. It shows strong performance in ’cotton’ classification, achieving
100 % precision. Furthermore, UncertainFusionNet exhibits a 3 %
improvement in precision for ‘sorghum’ compared to FusionNet. This
enhancement stems from a reduction in the misclassification of non-

sorghum images as ‘sorghum’ (Fig. 9 and Fig. S2), with its precision
approaching 100 %. At study area D, UncertainFusionNet demonstrates
substantial improvements over FusionNet, with increases in precision,
recall, and F1 for field-view images of each crop ranging from 2 % to 20
%. Particularly noteworthy are the ‘rice’ field-view images, where pre-
cision is boosted from 86.21 % (FusionNet) to 96.00 %, and recall is
elevated from 75.76 % (FusionNet) to 97.96 %. Overall, UncertainFu-
sionNet, through its novel integration of uncertainty information, pro-
vides CropSight with a robust and reliable model for crop type
identification from street view images. This ensures the high confidence
of the labels collected across a wide range of scenarios.

4.1.3. Comparison of UncertainFusionNet and benchmark models
Table 2 shows the accuracy metrics of crop type identification results

from field-view images using UncertainFusionNet and two benchmark
models (i.e., ResNet-50 and ViT-B16) across four study areas. All these
three models are fine-tuned and evaluated using the CropGSV dataset.
UncertainFusionNet consistently shows better performance in the field-
view image classification than the two benchmark models with preci-
sion, recall, F1, and overall accuracy all larger than 0.98 across four
study areas. The performance of ResNet-50 and ViT-B16 is more up to
the study areas. At study areas A and C, ResNet-50 yields higher accu-
racy across all metrics than ViT-B16. At study area B, these two
benchmark models show comparable performance. At study area D, ViT-
B16 demonstrates comparatively superior precision performance
compared to ResNet-50, while it exhibits slightly lower recall, F1 score,
and overall accuracy, with a difference of 0.02.

Closely related to user accuracy, precision is vital in assessing the
reliability of the final collected crop type labels. For all target crop
species, UncertainFusionNet outperforms the two benchmark models in
crop type identification across all four study areas, consistently
achieving a precision exceeding 0.95 (Fig. 12). At study area A, Uncer-
tainFusionNet exhibits better performance in identifying both ‘corn’ and
‘soybean’ field-view images compared to ResNet-50 and ViT-B16. The
two benchmarks achieve similar performance in crop type identifica-
tion, with ResNet-50 excelling in ‘corn’ and ViT-B16 in ‘soybean’. At
study area B, UncertainFusionNet outperforms both Resnet-50 and ViT-
B16 in identifying ‘cereal’ (0.98 vs. 0.91 vs. 0.90), ‘almond’ (0.98 vs.
0.96 vs. 0.94), and ‘pistachio’ (0.99 vs. 0.96 vs. 0.95) from field-view
images. At study area C, UncertainFusionNet excels in identifying
field-view images of local dominant crop species (i.e., corn, cotton, and
sorghum), and ResNet-50 performs better than ViT-B16. At study area D,
UncertainFusionNet consistently outperforms the second-best model,
achieving an improved precision by approximately 0.04 in identifying
the four local crop species. ResNet-50 slightly outperforms ViT-B16 in
identifying ‘corn’, ‘cotton’, and ‘soybean’ field-view images. Yet,
ResNet-50 lags behind ViT-B16 in ‘rice’ field-view image identifying,
achieving a precision near 0.7.

As depicted through the t-SNE visualization in Fig. 13, Uncertain-
FusionNet consistently produces clearer and cohesively clustered fea-
tures than the two benchmark models across four study areas, as
evidenced by higher Silhouette scores. This is achieved even without
leveraging uncertainty information to exclude predictions with high
uncertainty. This enhanced discriminative ability potentially explains
UncertainFusionNet’s superior crop type identification performance
compared to the two benchmark models. Additionally, uncertainty in-
formation associated with each prediction could further help mitigate
misclassifications that occur between crops with similar visual charac-
teristics, such as leaf shape and canopy morphology (Fig. S3).

Further investigations into the feature learning of UncertainFu-
sionNet are conducted using the Grad-CAM visualization technique. It
examines the contributions of two modeling components (i.e., ResNet-
50 and ViT-B16) to field-view image classification within Uncertain-
FusionNet. Under the trained UncertainFusionNet, the first branch (i.e.,
ResNet-50) gradually shifts focus from local features towards global
features as the layers go deeper, primarily highlighting the central

Table 2
Performance evaluation of UncertainFusionNet and benchmark models (i.e.,
ResNet-50 and ViT-B16) in crop type identification across study areas A-D.
Evaluation metrics (i.e., precision, recall, F1, and overall accuracy) are derived
from the CropGSV test datasets for each area. Bolded numbers indicate the
highest evaluation metric values among three models at each study area.

Study
area

Model Precision Recall F1 Overall
accuracy

A
ResNet-50 0.9567 0.9567 0.9567 0.9566
ViT-B16 0.9221 0.9294 0.9254 0.9256

UncertainFusionNet 0.9803 0.9847 0.9824 0.9823

B
ResNet-50 0.9490 0.9484 0.9486 0.9458
ViT-B16 0.9489 0.9504 0.9491 0.9467

UncertainFusionNet 0.9887 0.9883 0.9885 0.9888

C
ResNet-50 0.9644 0.9656 0.9650 0.9625
ViT-B16 0.9484 0.9550 0.9513 0.9487

UncertainFusionNet 0.9887 0.9883 0.9885 0.9779

D
ResNet-50 0.9042 0.9251 0.9131 0.9212
ViT-B16 0.9155 0.8669 0.8833 0.9021

UncertainFusionNet 0.9853 0.9871 0.9862 0.9883
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elements of corn images (Fig. 14). By contrast, the second branch (i.e.,
ViT-B16) showcases a consistent emphasis on global features right from
the initial layers, with the significance of these features (e.g., the leaves
and stalks of the corn) becoming increasingly pronounced in deeper
layers. This result indicates that the feature fusion design within
UncertainFusionNet integrates the complementary strengths of both
architectures (i.e., ResNet-50 and ViT-B16), ensuring comprehensive
learning of both local and global feature representations in field-view
images. To further assess the performance of the model that integrates
features from both ViT-B16 and ResNet-50, we conduct a comparison
between FusionNet (without considering uncertainty information) and
these two benchmark models. FusionNet shows relatively better per-
formance in crop type identification from field-view images than the
benchmark models over four study areas (Table S2). Specifically,
FusionNet demonstrates superior performance in terms of precision,
recall, F1 score, and overall accuracy, exhibiting improvements ranging
from 0.5 % to 3 % in study areas A, B, and D. Overall, UncertainFu-
sionNet shows superiority in providing high-confidence crop type label
predictions across a variety of study areas and crop species, attributed to
its feature fusion module and uncertainty-aware prediction. This supe-
riority ensures the reliability of the crop type ground truth collected by
CropSight.

4.2. Cropland boundary delineation

As shown in Table 3, fine-tuned SAM shows the best performance in
delineating the cropland boundaries compared to the two benchmarks
with consistently highest F1 score across four study areas. At study area
A, fine-tuned SAM achieves a precision of 0.8414, which surpasses SAM
(0.7470) and is comparable with that of Mask-RCNN (0.8581). Both
fine-tuned SAM and SAM achieve a recall of 1, indicating their excep-
tional capability in identifying all relevant cropland areas without
omissions, while Mask-RCNN’s recall is about 0.8917. The F1 score for
fine-tuned SAM is about 0.9138, outperforming both Mask-RCNN
(0.8746) and SAM (0.8552). At study area B, fine-tuned SAM achieves
the highest F1 score of 0.9455, followed by Mask-RCNN’s 0.8870 and
SAM’s 0.8803. Fine-tuned SAM and SAM maintain a recall of 1, yet fine-
tuned SAM’s precision (0.8967) markedly exceeds SAM (0.7862). At
study areas C and D, the cropland boundary delineation performance of
these three models maintains a consistent pattern as that of study areas A

and B. Overall, fine-tuned SAM outperforms SAM, achieving higher
precision and F1 scores, which suggests enhanced boundary delineation
ability of SAM on PlanetScope imagery after fine-tuning. Compared to
Mask-RCNN, fine-tuned SAM shows superior performance in ensuring
adequate boundary delineation of all target GSV images, reflected in its
higher recall and F1 score. This is attributed to SAM’s design of the
prompt that ensures no omission of agricultural boundary delineation
corresponding to each GSV image. Mask-RCNN, despite slightly higher
precision, has much larger false negative values than fine-tuned SAM
and may miss the GSV’s cropland boundaries entirely. The comparative
analysis underscores fine-tuned SAM’s consistent and robust perfor-
mance in delineating cropland boundaries with points as prompts across
diverse agricultural landscapes. The enhanced performance of fine-
tuned SAM is also observed in overall IoU and Dice scores among
three models (Table S3).

Fig. 15 presents visualization of typical boundary delineation results
from these models across four study areas. At study area A, fine-tuned
SAM effectively delineates cropland boundaries, whereas SAM occa-
sionally produces some irregular boundaries for certain fields. Mask-
RCNN fails to detect the fields in the right-lower corner of the viewing
area. At study area B, fine-tuned SAM more accurately captures field
boundaries in terms of completeness and correctness. SAM sometimes
struggles with fields that share similar colors or patterns, leading to
irregular boundaries. Mask-RCNN generally achieves comparable
completeness as fine-tuned SAM, though it may overlook the delineation
of some fields. At study area C, which features similar color tones and
less distinct boundaries, fine-tuned SAM offers the most accurate
boundary delineation, while SAM might occasionally group distinct
croplands as a single entity. Mask-RCNN faces challenges in accurately
capturing boundaries in this context. At study area D, the fine-tuned
SAM maintains its high level of accuracy in identifying cropland
boundaries. In contrast, SAM sometimes inaccurately merges multiple
fields into a single entity. Meanwhile, Mask-RCNN generally delineates
boundaries with precision but notably fails to identify one field located
in the central left portion of the viewing area. In summary, both the
accuracy metrics and visual analysis consistently demonstrate the su-
perior capability of the fine-tuned SAM and the base SAM in capturing
cropland boundaries corresponding to GSV images, outperforming
Mask-RCNN in this aspect. Additionally, the fine-tuning process further
elevates SAM’s precision in delineating cropland boundaries from

Fig. 12. Precision of crop type identification among UncertainFusionNet and two benchmark models across the four study areas A-D. These precision metrics are
derived from predictions on the CropGSV test datasets of the respective study areas.
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PlanetScope imagery.

4.3. Evaluation of CropSight and benchmark CDL product

As shown in Table 4, CropSight consistently outperforms CDL on
both evaluation levels across four study areas, maintaining an average
overall accuracy above 0.95. At study area A, CropSight achieves an
overall accuracy of 1.0 at both pixel-level and 0. 9732 at object-level.
CDL offers a comparable object-level accuracy of 0. 9695, but its
pixel-level accuracy drops to approximately 0.9332. At study area B,
CropSight achieves an overall accuracy of around 0.9436 at pixel-level
and 0. 9944 at object-level. However, CDL underperforms with an
object-level accuracy of 0.8276 and a significantly lower pixel-level
accuracy of 0.7586. The low overall accuracy of CDL is likely attrib-
uted to the complex agricultural landscape of study area B (i.e., Cali-
fornia) with diverse local crop species. This complexity is reflected in the
CDL reported accuracies, with grape identification around 0.8 and

winter wheat close to 0.7 for both user and producer accuracies, high-
lighting the difficulty in accurately labeling varied crop species from
satellite data. At study areas C and D, CropSight’s accuracy remains
above 0.97 at pixel level and above 0.93 at object-level, whereas CDL
achieves a decent object-level accuracy of approximately 0.9 but a lower
pixel-level accuracy of around 0.84.

Closely linked to user accuracy, precision is crucial for evaluating the
reliability of the final gathered crop type labels. Across all the four study
areas, CropSight outperforms CDL in precison at both pixel- and object-
levels across four study areas (Fig. 16). CropSight maintains a precision
accuracy of over 95 % for most crop species at these regions. By contrast,
CDL’s precision accuracy falls behind by more than 5 %, particularly for
crops like ‘almond’ and ‘cereal’ in study area B, and ‘corn’, ‘cotton’ and
‘soybean’ in D. The better performance of CropSight across all study
areas highlights its effectiveness in handling diverse crop species. This
success can be largely credited to its method of analyzing field-view
images to identify crop types, focusing on distinct visual features.

Fig. 13. t-SNE visualization illustrating the feature separation achieved by UncertainFusionNet (without filtering out predictions with high uncertainty) in com-
parison to two benchmark models across the four study areas A-D. The t-SNE maps are generated using the features from the penultimate layer of each model on the
CropGSV test datasets of the respective study areas. SS refers to Silhouette score.
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Furthermore, the result shows a large discrepancy in the precision of
CDL’s retrieved crop type labels between pixel-level and object-level
assessments. The object-based crop type labels from CropSight exhibits
higher consistency in representing crop types, as opposed to the pixel-
based labels from CDL, which tends to include a mixture of crop types
in agricultural fields (Fig. 17). Overall, these results demonstrate the
ability of CropSight to provide reliable and consistent crop type ground
truth across diverse crop species at the four study areas.

Using CropSight, we produce object-based crop type ground truth
maps of four distinct sites with each situated in one of our four study
areas in 2023 (Fig. 18). The collected crop type ground truth is notably
dense, demonstrating CropSight’s capability to potentially acquire a
large number of crop type ground truth labels across those areas. In

addition, there is a precise alignment of the collected object-based crop
type data from fine-tuned SAM with the field boundaries of the back-
ground PlanetScope images (Fig. 18(b)), suggesting the effective
boundary delineation ability of CropSight. It is worth noting that these
maps are generated using the within-season street view and satellite
images in 2023 when the corresponding CDL has not yet been produced.
These mapping results further indicate the potential of CropSight in
retrieving within-season object-based crop type ground truths at large
scales when the corresponding street view and satellite imagery be-
comes publicly accessible online.

5. Discussion

In the study, we propose an innovative CropSight framework to
efficiently retrieve object-based crop type ground truth using street view
and satellite imagery. CropSight integrates the operational cropland
field-view imagery collection method, the advanced uncertainty-aware
crop type image classification model (UncertainFusionNet), and the
cutting-edge promptable cropland boundary delineation model (SAM)
to systematically obtain massive ground truth locations of a diversity of
crop types and associated field boundaries. It streamlines the crop type
data collection process, significantly reducing the time and labor
traditionally required for field surveys, and provides a promising alter-
native to conventional crop type mapping products for crop type ground
truthing with high accuracy. CropSight demonstrates significant po-
tential for wall-to-wall crop type mapping through its collected crop
type labels, which align well with the corresponding distributions in the
CDL (Fig. S5). As the first framework to retrieve crop type ground truth
at the object level, CropSight significantly expands pixel-level ground
truth of existing studies (Pott et al., 2021; Yan and Ryu, 2021; Laguarta
et al., 2024) with potentially more enriched agricultural field charac-
teristics (e.g., within-object and between-object characteristics), facili-
tating more accurate crop distribution mapping and subsequent
agricultural applications. Furthermore, CropSight’s innovative Bayesian
approach to estimating the uncertainty in deep learning model pre-
dictions introduces a measure of confidence for each identified crop type
label. This approach greatly increases the accuracy of the final crop type
labels retrieved from street view imagery, ensuring the quality of
derived crop type ground truth. By integrating these two advanced
components with a specially designed method for cropland field-view
imagery collection, CropSight facilitates the large-scale, operational
acquisition of high-quality, object-level crop type labels.

Through the combined use of a suite of devised street imagery filters
and a spatially-adapted sampling strategy, the cropland field-view im-
agery collection method offers CropSight an operational means to

Fig. 14. Grad-CAM visualization of the first branch (i.e., ResNet-50) and the second branch (i.e., ViT-B16) of the fine-tuned UncertainFusionNet model, illustrating
the feature maps from shallow to deep layers.

Table 3
Performance evaluation of fine-tuned SAM and benchmark models (i.e., base
SAM and Mask-RCNN) in cropland boundary delineation across study areas A-D.
Evaluation metrics (i.e., TP, FP, FN, precision, recall, and F1) are derived from
the CropBoundary test datasets for each area. Bolded numbers indicate the
highest evaluation metric values among three models at each study area.

Study
area

Model TP FP FN Precision Recall F1

A

Mask-
RCNN

387 64 47 0.8581 0.8917 0.8746

SAM 372 126 0 0.7470 1.0000 0.8552
Fine-tuned

SAM
419 79 0 0.8414 1.0000 0.9138

B

Mask-
RCNN

671 56 115 0.9230 0.8537 0.8870

SAM 662 180 0 0.7862 1.0000 0.8803
Fine-tuned

SAM
755 87 0 0.8967 1.0000 0.9455

C

Mask-
RCNN

291 38 105 0.8845 0.7348 0.8028

SAM 349 85 0 0.8041 1.0000 0.8914
Fine-tuned

SAM
372 62 0 0.8571 1.0000 0.9231

D

Mask-
RCNN

620 80 66 0.8857 0.9038 0.8947

SAM 560 206 0 0.7311 1.0000 0.8446
Fine-tuned

SAM
659 107 0 0.8603 1.0000 0.9249
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effectively collect representative high-quality field-view imagery of
croplands at large scales. It enhances efficiency and reduces costs by
eliminating the need to collect all available street view imagery within a
study area for crop type labeling (Ringland et al., 2019; Wu et al., 2021;
Yan and Ryu, 2021). Furthermore, the enhancement of street view im-
agery largely reduces uncertainties in identifying crop types. Traditional
approaches frequently involve downsampling to fit large street view
images into deep learning models, which can lead to resolution degra-
dation and loss of detail (Ringland et al., 2019; Wu et al., 2021; Yan and
Ryu, 2021; Laguarta et al., 2024). Our method reduces the size of im-
agery by dynamically pinpointing the cropland’s central region. It pre-
serves the essential visual features and overall integrity of crops in the
imagery without compromising the spatial resolution, thereby ensuring
the quality of street view imagery for subsequent crop type classifica-
tion. While initially designed for GSV images, this operational collection
method can be easily adapted for other street view image datasets (e.g.,
Baidu Total View, KartaView, Mapillary). With the rise of autonomous
vehicles, an increasing number of cars are equipped with cameras. The

cropland field-view imagery collection method can be also extended to
handle vast image datasets captured by these vehicle-mounted cameras
in the future.

The UncertainFusionNet model, an innovative Bayesian convolu-
tional neural network, plays a crucial role in CropSight for precise crop
type labelling in complex agricultural landscapes. By integrating the
complementary strengths of two leading image classification architec-
tures, UncertainFusionNet could capture both discriminant local and
global visual features of crop plants from field-view imagery. This
feature fusion design significantly enhances the model’s ability to
accurately identify crop types with similar structures and morphologies,
a challenge that standalone convolutional neural network models (e.g.,
ResNet-50 and Inception v3) have encountered in previous research
(Kang et al., 2018; Ringland et al., 2019; Wu et al., 2021; Yan and Ryu,
2021; Zou and Wang, 2021; Paliyam et al., 2021; d’Andrimont et al.,
2022; Laguarta et al., 2024;). Additionally, its Bayesian approach allows
for the estimation of uncertainty in each prediction, offering valuable
insights into the confidence level of each crop type label. With entropy
and variance as the uncertainty metrics, this approach quantifies the
reliability of model’s predictions and enhances decision-making pro-
cesses by characterizing crop type labels of varying degrees of confi-
dence to potentially guide further data collection or model refinement
efforts. This novel uncertainty-aware method largely alleviates the
common challenge faced in previous studies of labeling images of crop
types with comparable visual features (e.g., leaf shape and canopy
morphology) throughout their growth stages, such as images of grass
and rice, or images of cotton and soybean (Fig. S3) (Ringland et al.,
2019; Wu et al., 2021; Yan and Ryu, 2021; d’Andrimont et al., 2022;
Laguarta et al., 2024).

SAM is employed in CropSight to extract the cropland boundary of

Fig. 15. Visualization of typical boundary delineation results from fine-tuned SAM, base SAM, and Mask-RCNN across four study areas A-D. These boundaries are
derived from predictions on the CropBoundary test datasets of the respective study area. The columns, from left to right, represent original PlanetScope images (PS),
ground truth boundaries (GT), boundaries derived from fine-tuned SAM, from base SAM, and from Mask-RCNN overlaid on PS.

Table 4
Overall accuracy of CDL’s and CropSight’s crop type labels at pixel- and object-
levels across four study areas using object-based crop type ground truth as
reference.

Study area
CDL CropSight

Pixel-level Object-level Pixel-level Object-level

A 0.9332 0.9695 1.00 0.9732
B 0.7586 0.8276 0.9944 0.9436
C 0.8433 0.9218 0.9942 0.9301
D 0.8426 0.8923 0.9701 0.9648
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each geotagged field-view imagery. As a pioneering promptable seg-
mentation model, SAM utilizes point prompts taken from field-view
imagery locations to guide the boundary delineation of each roadside
crop field from PlanetScope satellite images, achieving a recall value of
1. It effectively addresses the issue of missed cropland boundaries, a
common shortfall in traditional boundary delineation models (Zhang
et al., 2021; Jong et al., 2022; Mei et al., 2022; Cai et al., 2023). For
example, although Mask-RCNN matches SAM in terms of precision, dice,
and IoU metrics for detected cropland boundaries, its traditional non-
prompt-based design, which employs a sequential process of object
detection and boundary delineation, often results in overlooked crop-
land boundaries with lower recall and F1 scores. In addition, fine-tuning
SAM with the high-quality cropland boundary dataset (i.e., CropBoun-
dary) effectively resolves its zero-shot generalization challenges in
segmenting agricultural fields from satellite imagery. The original SAM
model, trained on a dataset primarily composed of natural imagery,
faces performance degradation when applied to satellite images,
particularly in complex scenarios where croplands display similar colors
and canopy textures, resulting in obscure boundaries across fields. This
fine-tuning process adapts SAM from its original focus on natural im-
agery to meet the unique needs of agricultural landscapes, enhancing its
ability to precisely delineate cropland boundaries and differentiate
fields of similar visual characteristics from satellite imagery. However,
the fine-tuned SAM may still face challenges in accurately delineating
productive boundaries for different crop types within a single field from
satellite images, particularly for fields that exhibit uniform canopy
features (e.g., color and texture) throughout the growing season in sat-
ellite imagery.

The CropSight framework exhibits strong applicability and general-
izability in retrieving accurate crop type labels across various landscapes
and species, as evidenced by the 2023 ground truth data collected in four
study areas and Brazil (Fig. 18 and Fig. S4). Its consistently superior
performance highlights its potential to complement (or as a promising
alternative to) the conventional method of deriving crop type ground
truth from satellite-based crop type products. Even for crops charac-
terized by relatively low producer and user accuracies in the crop type
product CDL of our study site (Liu et al., 2004), CropSight could achieve
a consistent overall accuracy over 93 %. This disparity in performance is
primarily attributed to the different data sources and methods employed

for acquiring crop type labels. The satellite-based crop type products are
typically generated by analyzing crop phenological patterns and tem-
poral changes in crop spectral characteristics from satellite imagery time
series. Dense satellite imagery ensures extensive coverage of satellite-
based crop type products, enabling the retrieval of abundant ground
truth data for various crop types. Yet the temporal and phenological
patterns of crop species are affected by a combination of climatic and
environmental factors, and may vary largely over space and time. Also
the phenological patterns of certain crop types may be comparable,
further affecting the accuracy and reliability of the ground truth data
sourced from satellite-derived products. By contrast, CropSight lever-
ages visual features (e.g., leaf shape, plant structure, canopy
morphology, and flowering) learned from street view images for crop
type classification. These high-resolution, close-up visualizations of the
crops’ physical characteristics enable the accurate identification of crops
that may share similar phenological growth patterns but exhibit distinct
morphological details, particularly in regions with complex agricultural
landscapes and a diverse array of dominant crop species (Ringland et al.,
2019; Wu et al., 2021; Yan and Ryu, 2021; Laguarta et al., 2024).
Compared to satellite imagery, the visual features of the same crop type
from street imagery are more consistent over space and time, facilitating
more generalizable crop type labeling retrieval. Moreover, current crop
type products are typically generated at the pixel level, with possibly
mixed pixels in the same cropland area. By integrating crop type image
classification and associated cropland boundary delineation, CropSight
is pioneering in providing high-quality crop type ground truth at the
object level. It eliminates the pixel mixture issue from different crop
types within a field, as well as enriches the ground truth information of
crop types with cropland boundary associated characteristics.

While the CropSight framework possesses its unique advantages and
shows promising performance in retrieving object-based crop type
ground truth, there still exist limitations. Large-scale applications of
CropSight may be financially expensive due to the costs associated with
using commercial data (i.e., GSV and PlanetScope). Within CropSight,
UncertainFusionNet may need to be further adapted and refined to
classify fields intercropped with various crop types using street view
images. A potential adaptation is to enrich the training dataset with
images of intercropping scenarios. This expansion will enable the model
to differentiate between solitary plants and interacting plants as distinct

Fig. 16. Precision of CDL’s and CropSight’s crop type labels at pixel- and object-levels for each dominant crop species across four study areas A-D using the collected
object-based crop type ground truth.
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categories, thereby refining the retrieval of crop type information for
intercropping systems. Furthermore, the availability of street view im-
agery may be unevenly distributed, possibly more prevalent in urban
areas than in rural regions. This imbalance may impact the distribution
of the crop type ground truth data collected by CropSight (Fig. S5).
Additionally, crop species from the same family, such as small grain
cereals (e.g., rice and winter wheat), can exhibit relatively similar visual
traits, including color, growth patterns, and morphology. These simi-
larities pose challenges in accurately differentiating certain crop types
within the same family from street view imagery. A potential solution
lies in combining street view imagery with temporal remote sensing
data. This integration takes into account both the rich visual crop fea-
tures from street view imagery and the crop spectral and phenological
characteristics from remote sensing time series (Diao, 2020; Diao et al.,
2021), possibly facilitating more robust and improved identification of
crop species within a family.

Expanding CropSight’s application to national and even interna-
tional scales will be beneficial for the creation of a more extensive and
all-encompassing global dataset of object-based crop type ground truth.
By expanding to include a variety of commercial street view imagery and
satellite platforms, CropSight can significantly enhance its data collec-
tion capabilities worldwide. In regions without GSV, alternative street

view image sources (e.g., Baidu Total View, KartaView, and Mapillary)
could be utilized to expand the data sources for retrieving crop type
labels. In countries with smallholder fields, higher spatial resolution
satellite imagery (e.g., WorldView) can be employed to provide clearer
canopy features for boundary delineation. This collected rich object-
based crop type data can be instrumental in providing ground truth
data for extensive crop distribution mapping, especially for regions
without crop type mapping products. Furthermore, the CropSight
framework shows capacity for advancing near-real-time crop type
mapping, which is crucial for timely evaluations of weather impacts on
agriculture, aiding in early detection of food security risks and rapid
damage assessments (Gao and Zhang, 2021; Yang et al., 2023; Yang
et al., 2024; ). As autonomous vehicles become more prevalent, Crop-
Sight can uniquely capitalize on this trend by repurposing navigation
images to acquire precise ground truth data on crop types. This approach
enables rapid collection of detailed, object-based crop type ground
truth, essential for timely and operational mapping of diverse crop
species over large areas. Along with crop yield maps, crop type maps can
further be leveraged to analyze drivers of yield gaps of each crop species
and overall crop productivity (Zhang and Diao, 2023), especially for
those regions with diverse agricultural practices and varying crop ro-
tations. The assessment of the gaps between achieved and attainable

Fig. 17. Examples showcasing roadside field-view images (GSV), PlanetScope imagery (PS), crop type ground truth (GT), and crop type labels from CropSight and
CDL, of all studied crop species.
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yields can enable more informed and strategic crop species planting
decision, enhancing agricultural productivity and resilience, as well as
driving more effective policy-making for addressing food insecurity.

6. Conclusion

In our study, we develop an innovative deep learning-based Crop-
Sight modeling framework to retrieve object-based crop type ground
truth by synthesizing Google Street View and PlanetScope satellite im-
ages. CropSight comprises three key components: large-scale opera-
tional cropland field-view imagery collection method, uncertainty-
aware crop type image classification model (UncertainFusionNet), and
cropland boundary delineation model (SAM). Across four agriculturally
dominated regions in the US, CropSight consistently achieves an overall
accuracy of around 97 % in retrieving crop type label for multiple
dominant crop species and an F1 score of approximately 92 % in
delineating cropland boundaries. With the feature fusion and Bayesian
classification module design, UncertainFusionNet surpasses benchmark
image classification models (i.e., ResNet-50 and ViT-B16) in the iden-
tification of crop types from collected geotagged field-view images. The
uncertainty quantification of CropSight further enhances the quality of
retrieved crop type ground truth labels. With the promptable design, the
fine-tuned SAM outperforms benchmark segmentation models (i.e., the
base SAM and Mask-RCNN) in delineating boundaries corresponding to
each geotagged field-view image with improved F1 and the recall being
1. CropSight also shows high potential in timely retrieving object-based
crop type ground truth given the low latency of Google Street View and
PlanetScope satellite images. Overall, the CropSight framework enables
large-scale operational collection of crop type ground truth across
various study areas and crop species at the object level, without
requiring in-situ field observation. The retrieved ground truth is critical
in advancing within-season crop type mapping and crop species-specific
growth monitoring, aiding in timely decision-making for building more
sustainable agricultural systems.
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